231 resultados para heat adaptation
Resumo:
This paper considers an additive noise channel where the time-κ noise variance is a weighted sum of the squared magnitudes of the previous channel inputs plus a constant. This channel model accounts for the dependence of the intrinsic thermal noise on the data due to the heat dissipation associated with the transmission of data in electronic circuits: the data determine the transmitted signal, which in turn heats up the circuit and thus influences the power of the thermal noise. The capacity of this channel (both with and without feedback) is studied at low transmit powers and at high transmit powers. At low transmit powers, the slope of the capacity-versus-power curve at zero is computed and it is shown that the heating-up effect is beneficial. At high transmit powers, conditions are determined under which the capacity is bounded, i.e., under which the capacity does not grow to infinity as the allowed average power tends to infinity. © 2009 IEEE.
Resumo:
The two-point spatial correlation of the rate of change of fluctuating heat release rate is central to the sound emission from open turbulent flames, and a few attempts have been made to address this correlation in recent studies. In this paper, the two-point correlation and its role in combustion noise are studied by analysing direct numerical simulation (DNS) data of statistically multi-dimensional turbulent premixed flames. The results suggest that this correlation function depends on the separation distance and direction but, not on the positions inside the flame brush. This correlation can be modelled using a combination of Hermite-Gaussian functions of zero and second order, i.e. functions of the form (1-Ax2)e-Bx2 for constants A and B, to include its possible negative values. The integral correlation volume obtained using this model is about 0.2δL3 with the length scale obtained from its cube root being about 0.6δ L, where δ L is the laminar flame thermal thickness. Both of the values are slightly larger than the values reported in an earlier study because of the anisotropy observed for the correlation. This model together with the turbulence-dependent parameter K, the ratio of the root-mean-square (RMS) value of the rate of change of reaction rate to the mean reaction rate, derived from the DNS data is applied to predict the far-field sound emitted from open flames. The calculated noise levels agree well with recently reported measurements and show a sensitivity to K values. © 2012 The Combustion Institute.
Resumo:
Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree.Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity.
Resumo:
In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.
Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction
Resumo:
Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (α), compound angle (β ), hole inlet geometry and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR = 0.16, 0.64 and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different α and β but with the same angle between the mainstream and coolant flow directions (angle κ). This relationship is assessed through experiments by testing two sets of cylindrical holes with different α and β : one set with κ = 35°, another set with κ = 60°. The data confirm the stated relationship between α, β, κ and the aerodynamic mixing loss. The results show that the designer should minimise κ to obtain the lowest loss, but maximise β to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α =35.0°, β =0°) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is ≈ 50 % of the loss of the fan-shaped hole at IR = 0.64 and 1.44. Copyright © 2011 by ASME.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. The standard approach involves only cross adapting acoustic models. To fully exploit the complimentary features among sub-systems, language model (LM) cross adaptation techniques can be used. Previous research on multi-level n-gram LM cross adaptation is extended to further include the cross adaptation of neural network LMs in this paper. Using this improved LM cross adaptation framework, significant error rate gains of 4.0%-7.1% relative were obtained over acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. Copyright © 2011 ISCA.
Resumo:
The effects of random surface roughness on slip flow and heat transfer in microbearings are investigated. A three-dimensional random surface roughness model characterized by fractal geometry is used to describe the multiscale self-affine roughness, which is represented by the modified two-variable Weierstrass- Mandelbrot (W-M) functions, at micro-scale. Based on this fractal characterization, the roles of rarefaction and roughness on the thermal and flow properties in microbearings are predicted and evaluated using numerical analyses and simulations. The results show that the boundary conditions of velocity slip and temperature jump depend not only on the Knudsen number but also on the surface roughness. It is found that the effects of the gas rarefaction and surface roughness on flow behavior and heat transfer in the microbearing are strongly coupled. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. In addition, the effects of temperature difference and relative roughness on the heat transfer in the bearing are also analyzed and discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
For many applications, it is necessary to produce speech transcriptions in a causal fashion. To produce high quality transcripts, speaker adaptation is often used. This requires online speaker clustering and incremental adaptation techniques to be developed. This paper presents an integrated approach to online speaker clustering and adaptation which allows efficient clustering of speakers using the same accumulated statistics that are normally used for adaptation. Using a consistent criterion for both clustering and adaptation should yield gains for both stages. The proposed approach is evaluated on a meetings transcription task using audio from multiple distant microphones. Consistent gains over standard clustering and adaptation were obtained. Copyright © 2011 ISCA.