188 resultados para decoupling network
Resumo:
This paper extends a state projection method for structure preserving model reduction to situations where only a weaker notion of system structure is available. This weaker notion of structure, identifying the causal relationship between manifest variables of the system, is especially relevant is settings such as systems biology, where a clear partition of state variables into distinct subsystems may be unknown, or not even exist. The resulting technique, like similar approaches, does not provide theoretical performance guarantees, so an extensive computational study is conducted, and it is observed to work fairly well in practice. Moreover, conditions characterizing structurally minimal realizations and sufficient conditions characterizing edge loss resulting from the reduction process, are presented. ©2009 IEEE.
Resumo:
Purpose: This paper aims to improve understanding of how to manage global network operations from an engineering perspective. Design/methodology/approach: This research adopted a theory building approach based on case studies. Grounded in the existing literature, the theoretical framework was refined and enriched through nine in-depth case studies in the industry sectors of aerospace, automotives, defence and electrics and electronics. Findings: This paper demonstrates the main value creation mechanisms of global network operations along the engineering value chain. Typical organisational features to support the value creation mechanisms are captured, and the key issues in engineering network design and operations are presented with an overall framework. Practical implications: Evidenced by a series of pilot applications, outputs of this research can help companies to improve the performance of their current engineering networks and design new engineering networks to better support their global businesses and customers in a systematic way. Originality/value: Issues about the design and operations of global engineering networks (GEN) are poorly understood in the existing literature in contrast to their apparent importance in value creation and realisation. To address this knowledge gap, this paper introduces the concept of engineering value chain to highlight the potential of a value chain approach to the exploration of engineering activities in a complex business context. At the same time, it develops an overall framework for managing GEN along the engineering value chain. This improves our understanding of engineering in industrial value chains and extends the theoretical understanding of GEN through integrating the engineering network theories and the value chain concepts. © Emerald Group Publishing Limited.
RE-DESIGNING PD PROCESS ARCHITECTURE BY TRANSFORMING TASK NETWORK MODELS INTO SYSTEM DYNAMICS MODELS
Resumo:
Latent variable models for network data extract a summary of the relational structure underlying an observed network. The simplest possible models subdivide nodes of the network into clusters; the probability of a link between any two nodes then depends only on their cluster assignment. Currently available models can be classified by whether clusters are disjoint or are allowed to overlap. These models can explain a "flat" clustering structure. Hierarchical Bayesian models provide a natural approach to capture more complex dependencies. We propose a model in which objects are characterised by a latent feature vector. Each feature is itself partitioned into disjoint groups (subclusters), corresponding to a second layer of hierarchy. In experimental comparisons, the model achieves significantly improved predictive performance on social and biological link prediction tasks. The results indicate that models with a single layer hierarchy over-simplify real networks.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. The standard approach involves only cross adapting acoustic models. To fully exploit the complimentary features among sub-systems, language model (LM) cross adaptation techniques can be used. Previous research on multi-level n-gram LM cross adaptation is extended to further include the cross adaptation of neural network LMs in this paper. Using this improved LM cross adaptation framework, significant error rate gains of 4.0%-7.1% relative were obtained over acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. Copyright © 2011 ISCA.
Resumo:
This paper presents a novel way to speed up the evaluation time of a boosting classifier. We make a shallow (flat) network deep (hierarchical) by growing a tree from decision regions of a given boosting classifier. The tree provides many short paths for speeding up while preserving the reasonably smooth decision regions of the boosting classifier for good generalisation. For converting a boosting classifier into a decision tree, we formulate a Boolean optimization problem, which has been previously studied for circuit design but limited to a small number of binary variables. In this work, a novel optimisation method is proposed for, firstly, several tens of variables i.e. weak-learners of a boosting classifier, and then any larger number of weak-learners by using a two-stage cascade. Experiments on the synthetic and face image data sets show that the obtained tree achieves a significant speed up both over a standard boosting classifier and the Fast-exit-a previously described method for speeding-up boosting classification, at the same accuracy. The proposed method as a general meta-algorithm is also useful for a boosting cascade, where it speeds up individual stage classifiers by different gains. The proposed method is further demonstrated for fast-moving object tracking and segmentation problems. © 2011 Springer Science+Business Media, LLC.
Resumo:
In this paper we consider the problem of state estimation over a communication network. Using estimation quality as a metric, two communication schemes are studied and compared. In scheme one, each sensor node communicates its measurement data to the remote estimator, while in scheme two, each sensor node communicates its local state estimate to the remote estimator. We show that with perfect communication link, if the sensor has unlimited computation capability, the two schemes produce the same estimate at the estimator, and if the sensor has limited computation capability, scheme one is always better than scheme two. On the other hand, when data packet drops occur over the communication link, we show that if the sensor has unlimited computation capability, scheme two always outperforms scheme one, and if the sensor has limited computation capability, we show that in general there exists a critical packet arrival rate, above which scheme one outperforms scheme two. Simulations are provided to demonstrate the two schemes under various circumstances. © South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2010.