198 resultados para cyclic loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallels between the dynamic response of flexible bridges under the action of wind and under the forces induced by crowds allow each field to inform the other.Wind-induced behaviour has been traditionally classified into categories such as flutter, galloping, vortex-induced vibration and buffeting. However, computational advances such as the vortex particle method have led to a more general picture where effects may occur simultaneously and interact, such that the simple semantic demarcations break down. Similarly, the modelling of individual pedestrians has progressed the understanding of human–structure interaction, particularly for large amplitude lateral oscillations under crowd loading. In this paper, guided by the interaction of flutter and vortexinduced vibration in wind engineering, a framework is presented, which allows various human–structure interaction effects to coexist and interact, thereby providing a possible synthesis of previously disparate experimental and theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jacked piles are becoming a valuable installation method due to the low noise and vibration involved in the installation procedure. Cyclic jacking may be used in an attempt to decrease the required installation force. Small scale models of jacked piles were tested in sand and silt in a 10 m beam centrifuge. Two different piles were tested: smooth and rough. Piles were driven in two ways with monotonic and cyclically jacked installations. The cyclically jacked installation involves displacement reversal at certain depth for a fixed number of cycles. The depth of reversal and amplitude of the cycle vary for different tests. Data show that the base resistance increases during cyclic jacking due to soil compaction at the pile toe. On the other hand, shaft load decreases with the number of cycles applied due to densification of soil next to the pile shaft. Cyclic jacking may be used in unplugged tubular piles to decrease the required installation load. © 2013 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite structures exhibit many different failure mechanisms, but attempts to model composite failure frequently make a priori assumptions about the mechanism by which failure will occur. Wang et al. [1] conducted compressive tests on four configurations of composite specimen manufactured with out-of-plane waviness created by ply-drop defects. There were significantly different failures for each case. Detailed finite element models of these experiments were developed which include competing failure mechanisms. The model predictions correlate well with experimental results-both qualitatively (location of failure and shape of failed specimen) and quantitatively (failure load). The models are used to identify the progression of failure during the compressive tests, determine the critical failure mechanism for each configuration, and investigate the effect of cohesive parameters upon specimen strength. This modelling approach which includes multiple competing failure mechanisms can be applied to predict failure in situations where the failure mechanism is not known in advance. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. This inherent buoyancy may cause lightweight structures to float when the soil liquefies. Centrifuge tests have been carried out to study the excess pore pressure generation and dissipation in liquefiable soils. In these tests, near full liquefaction conditions were attained within a few cycles of the earthquake loading. In the case of high hydraulic conductivity sands, significant dissipation could take place even during the earthquake loading which inhibits full liquefaction from occurring. In the case of excess pore pressure generation and dissipation around a floating structure, the cyclic response of the structure may lead to the reduction in excess pore pressure near the face of the structure as compared to the far field. This reduction in excess pore pressure is due to shear-induced dilation and suction pressures arising from extensile stresses at the soil-structure interface. Given the lower excess pore pressure around the structure; the soil around the structure retains a portion of this shear strength which in turn can discourage significant uplift of the underground structure. Copyright © 2012, IGI Global.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plate anchors are increasingly being used to moor large floating offshore structures in deep and ultradeep water. These facilities impart substantial vertical uplift loading to plate anchors. However, extreme operating conditions such as hurricane loading often result in partial system failures, with significant change in the orientation of the remaining intact mooring lines. The purpose of this study is to investigate the undrained pure translational (parallel to plate) and torsional bearing capacity of anchor plates idealized as square and rectangular shaped plates. Moreover, the interaction response of plate anchors under combined translational and torsional loading is studied using a modified plastic limit analysis (PLA) approach. The previous PLA formulation which did not account for shear-normal force interaction on the vertical end faces of the plate provides an exact solution to the idealized problem of an infinitely thin plate but only an approximate solution to the problem of a plate of finite thickness. This is also confirmed by the three-dimensional finite element (FE) results, since the PLA values exceed FE results as the thickness of the plate increases. By incorporating the shear-normal interaction relationship in the modified solution, the torsional bearing capacity factors, as well as the plate interaction responses are enhanced as they show satisfactory agreement with the FE results. The interaction relationship is then obtained for square and rectangular plates of different aspect ratios and thicknesses. The new interaction relationships could also be used as an associated plastic failure locus for combined shear and torsional loading to predict plastic displacements and rotations in translational and torsional loading modes as well. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue stresses associated with extreme storms, vessel movements, and vortex-induced vibrations are critical to the performance of steel catenary risers. The critical location for fatigue damage often occurs within the touchdown zone, where cyclic interaction of the riser with the seabed occurs. Developing a model for seabed stiffness requires characterization of a number of complex nonlinear processes including trench formation, nonlinear soil stiffness, soil suction, and breakaway of the riser from the seafloor. The analytical framework utilized in this research considers the riser-seafloor interaction problem in terms of a pipe resting on a bed of springs, the stiffness characteristics of which are described by nonlinear load-deflection (P-y) curves. The P-y model allows for first penetration and uplift, as well as repenetration and small range motions within the bounding loop defined by extreme loading. The backbone curve is constructed from knowledge of the soil strength, the rate of strength increase with depth, trench width, and two additional parameters, while three parameters are necessary for the cyclic response. © ASCE 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented to predict the transient response of a structure at the driving point following an impact or a shock loading. The displacement and the contact force are calculated solving the discrete convolution between the impulse response and the contact force itself, expressed in terms of a nonlinear Hertzian contact stiffness. Application of random point process theory allows the calculation of the impulse response function from knowledge of the modal density and the geometric characteristics of the structure only. The theory is applied to a wide range of structures and results are experimentally verified for the case of a rigid object hitting a beam, a plate, a thin and a thick cylinder and for the impact between two cylinders. The modal density of the flexural modes for a thick slender cylinder is derived analytically. Good agreement is found between experimental, simulated and published results, showing the reliability of the method for a wide range of situations including impacts and pyroshock applications. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foundations of subsea infrastructure in deep water subjected to asymmetric environmental loads have underscored the importance of combined torsional and horizontal loading effects on the bearing capacity of rectangular shallow foundations. The purpose of this study is to investigate the undrained sliding and torsional bearing capacity of rectangular and square shallow foundations together with the interaction response under combined loading using three-dimensional finite element (3D-FE) analysis. Upper bound plastic limit analysis is employed to establish a reference value for horizontal and torsional bearing capacity, and an interaction relationship for the combined loading condition. Satisfactory agreement of plastic limit analysis (PLA) and 3D-FE results for ultimate capacity and interaction curves ensures that simple PLA solution could be used to evaluate the bearing capacity problem of foundation under combined sliding and torsion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns the prediction of the response of an uncertain structure to a load of short duration. Assuming an ensemble of structures with small random variations about a nominal form, a mean impulse response can be found using only the modal density of the structure. The mean impulse response turns out to be the same as the response of an infinite structure: the response is calculated by taking into account the direct field only, without reflections. Considering the short duration of an impulsive loading, the approach is reasonable before the effect of the reverberant field becomes important. The convolution between the mean impulse response and the shock loading is solved in discrete time to calculate the response at the driving point and at remote points. Experimental and numerical examples are presented to validate the theory presented for simple structures such as beams, plates, and cylinders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most modern design codes do not allow for movement between a shallow foundation and the underlying soil during seismic loading. Consequently, the full magnitude of seismic energy is transmitted from the soil to the foundation during an earthquake. This energy either has to be dissipated before reaching the superstructure via engineering solutions such as base isolation systems, or the structure itself must withstand the full impact of the earthquake resulting in high material usage and expensive design. However, the inherent hysteric behaviour of soil can be used to isolate a foundation from the underlying soil. As part of a study into the soil-structure-interaction of shallow foundations, methods to optimise foundation isolation were investigated. In this paper the results from centrifuge tests investigating two of these methods are compared to results when no special foundation layout was implemented and the impact of the proposed isolation methods is discussed. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new simple shear testing device capable of applying multidirectional loading to soil specimens has been developed. The Texas A&M University multidirectional simple shear (TAMU-MDSS) device provides the ability to apply a large range of shear stresses and complex loading paths, such as figure-eight and circular patterns, to a cylindrical soil specimen confined by a wire-reinforced membrane. The load and torque experienced by the sample are directly measured by a multi-axis load cell installed above the specimen. Backpressure saturation of the specimen is made possible by the devicés ability to apply pressure in the chamber and backpressure to the water lines. Excess pore pressure is measured by a pressure transducer during the shearing phase of the testing. This paper describes the development of the TAMU-MDSS system and the capabilities of the device and presents test results on saturated clay soil specimens subjected to monotonic, unidirectional cyclic, and multidirectional loading. Copyright © 2013 by ASTM International.