225 resultados para computational statistics
Resumo:
Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme using both simulated and real data originating from DNA analysis.
Resumo:
Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme using both simulated and real data originating from DNA analysis.
Resumo:
This paper presents an agenda-based user simulator which has been extended to be trainable on real data with the aim of more closely modelling the complex rational behaviour exhibited by real users. The train-able part is formed by a set of random decision points that may be encountered during the process of receiving a system act and responding with a user act. A sample-based method is presented for using real user data to estimate the parameters that control these decisions. Evaluation results are given both in terms of statistics of generated user behaviour and the quality of policies trained with different simulators. Compared to a handcrafted simulator, the trained system provides a much better fit to corpus data and evaluations suggest that this better fit should result in improved dialogue performance. © 2010 Association for Computational Linguistics.
Resumo:
Synapses exhibit an extraordinary degree of short-term malleability, with release probabilities and effective synaptic strengths changing markedly over multiple timescales. From the perspective of a fixed computational operation in a network, this seems like a most unacceptable degree of added variability. We suggest an alternative theory according to which short-term synaptic plasticity plays a normatively-justifiable role. This theory starts from the commonplace observation that the spiking of a neuron is an incomplete, digital, report of the analog quantity that contains all the critical information, namely its membrane potential. We suggest that a synapse solves the inverse problem of estimating the pre-synaptic membrane potential from the spikes it receives, acting as a recursive filter. We show that the dynamics of short-term synaptic depression closely resemble those required for optimal filtering, and that they indeed support high quality estimation. Under this account, the local postsynaptic potential and the level of synaptic resources track the (scaled) mean and variance of the estimated presynaptic membrane potential. We make experimentally testable predictions for how the statistics of subthreshold membrane potential fluctuations and the form of spiking non-linearity should be related to the properties of short-term plasticity in any particular cell type.
Resumo:
From modelling to manufacturing, computers have increasingly become partners in the design process, helping automate many phases once carried out by hand. In the creative phase, computational synthesis methods aim at facilitating designers' task through the automated generation of optimally directed design alternatives. Nevertheless, applications of these techniques are mainly academic and industrial design practice is still far from applying them routinely. This is due to the complex nature of many design tasks and to the difficulty of developing synthesis methods that can be easily adapted to multiple case studies and automated simulation. This work stems from the analysis of implementation issues and obstacles to the widespread use of these tools. The research investigates the possibility to remove these obstacles through the application of a novel technique to complex design tasks. The ability of this technique to scale-up without sacrificing accuracy is demonstrated. The successful results confirm the possibility to use synthesis methods in complex design tasks and spread their commercial and industrial application.
Resumo:
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. Copyright © 2012 by Daniella E. Raveh and Michael Iovnovich.
Resumo:
Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which uses dynamic Bayesian networks to learn from semantically-aligned data produced by 42 untrained annotators. A human evaluation shows that BAGEL can generate natural and informative utterances from unseen inputs in the information presentation domain. Additionally, generation performance on sparse datasets is improved significantly by using certainty-based active learning, yielding ratings close to the human gold standard with a fraction of the data. © 2010 Association for Computational Linguistics.
Resumo:
Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree.Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity.
Resumo:
Analytical methods provide a global context from which to understand the dynamics of stone spires, but computational and experimental methods are useful to predict more specific behavior of multiple block structures. In this paper, the spire of St. Mary Magdalene church in Waltham-on-the-Wolds, UK, which was damaged in the 2008 Lincolnshire Earthquake, is used as a case study. Both a physical model and a discrete element computational model of the spire were created and used to investigate collapse under constant horizontal acceleration, impulse base motion, and earthquake ground motion. Results indicate that the global behavior compares well with analytical modeling, but local block displacements evident in DEM and experimental results also reduce the stability of the structure. In this context, the observed damage to St. Mary Magdalene church is evaluated and discussed. © 2012 Elsevier Ltd.
Resumo:
The geometric alignment of turbulent strain-rate structures with premixed flames greatly influences the results of the turbulence-flame interaction. Here, the statistics and dynamics of this alignment are experimentally investigated in turbulent premixed Bunsen flames using high-repetition-rate stereoscopic particle image velocimetry. In all cases, the statistics showed that the most extensive principal strain-rate associated with the turbulence preferentially aligned such that it was more perpendicular than parallel to the flame surface normal direction. The mean turbulence-flame alignment differed between the flames, with the stronger flames (higher laminar flame speed) exhibiting stronger preferential alignment. Furthermore, the preferential alignment was greatest on the reactant side of the mean flame brush. To understand these differences, individual structures of fluid-dynamic strain-rate were tracked through time in a Lagrangian manner (i.e., by following the fluid elements). It was found that the flame surface affected the orientation of the turbulence structures, with the majority of structures rotating as they approached the flame such that their most extensive principal strain-rate was perpendicular to the flame normal. The maximum change in turbulent structure orientation was found to decrease with the strength of the structure, increase with the strength of the flame, and exhibit similar trends when the structure strength and flame strength were represented by a Karlovitz number. The mean change in orientation decreased from the unburnt to burnt side of the flame brush and appears to be influenced by the overall flame shape. © 2011 The Combustion Institute.
Resumo:
The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force-indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force-indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force-indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force-indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling-experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.
Resumo:
The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.