191 resultados para compression tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design optimisation of compressor systems is a computationally expensive problem due to the large number of variables, complicated design space and expense of the analysis tools. One approach to reduce the expense of the process and make it achievable in industrial timescales is to employ multi-fidelity techniques, which utilise more rapid tools in conjunction with the highest fidelity analyses. The complexity of the compressor design landscape is such that the starting point for these optimisations can influence the achievable results; these starting points are often existing (optimised) compressor designs, which form a limited set in terms of both quantity and diversity of the design. To facilitate the multi-fidelity optimisation procedure, a compressor synthesis code was developed which allowed the performance attributes (e.g. stage loadings, inlet conditions) to be stipulated, enabling the generation of a variety of compressors covering a range of both design topology and quality to act as seeding geometries for the optimisation procedures. Analysis of the performance of the multi-fidelity optimisation system when restricting its exploration space to topologically different areas of the design space indicated little advantage over allowing the system to search the design space itself. However, comparing results from optimisations started from seed designs with different aerodynamic qualites indicated an improved performance could be achieved by starting an optimisation from a higher quality point, and thus that the choice of starting point did affect the final outcome of the optimisations. Both investigations indicated that the performance gains through the optimisation were largely defined by the early exploration of the design space where the multi-fidelity speedup could be exploited, thus extending this region is likely to have the greatest effect on performance of the optimisation system. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal shock wave/boundary-layer interaction is important to the operation and performance of a supersonic inlet, and the normal shock wave/boundary-layer interaction is particularly prominent in external compression inlets. To improve understanding of such interactions, it is helpful to make use of fundamental flows that capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental flowfield configurations have been considered as possible test cases to represent the normal shock wave/boundary-layer interaction aspects found in typical external compression inlets, and it was found that the spillage diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flowfield allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to all be held approximately constant and independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, and the width is around twice or three times the height. In addition, the area expansion downstream of the shock should be limited to the conservative side of incipient stall based on incompressible diffusers. Copyright © 2013 by the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of back-supported buffer plates comprising a solid face sheet and foam core backing impacted by a column of high velocity particles (sand slug) is investigated via a lumped parameter model and coupled discrete/continuum simulations. The buffer plate is either resting on (unattached) or attached to a rigid stationary foundation. The lumped parameter model is used to construct maps of the regimes of behaviour with axes of the ratio of the height of the sand slug to core thickness and the normalised core strength. Four regimes of behaviour are identified based on whether the core compression ends prior to the densification of the sand slug or vice versa. Coupled discrete/continuum simulations are also reported and compared with the lumped parameter model. While the model predicted regimes of behaviour are in excellent agreement with numerical simulations, the lumped parameter model is unable to predict the momentum transmitted to the supports as it neglects the role of elasticity in both the buffer plate and the sand slug. The numerical calculations show that the momentum transfer is minimised for intermediate values of the core strength when the so-called "soft-catch" mechanism is in play. In this regime the bounce-back of the sand slug is minimised which reduces the momentum transfer. However, in this regime, the impulse reduction is small (less than 10% of that transferred to a rigid structure). For high values of the core strength, the response of the buffer plate resembles a rigid plate with nearly no impulse mitigation while at low values of core strength, a slap event occurs when the face sheet impinges against the foundation due to full densification of the foam core. This slap event results in a significant enhancement of the momentum transfer to the foundation. The results demonstrate that appropriately designed buffer plates have potential as impulse mitigators in landmine loading situations. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile and compression properties of self-reinforced poly(ethylene terephthalate) (SrPET) composites has been investigated. SrPET composites or all-polymer composites have improved mechanical properties compared to the bulk polymer but with maintained recyclability. In contrast to traditional carbon/glass fibre reinforced composites, SrPET composites are very ductile, resulting in high failure strains without softening or catastrophic failure. In tension, the SrPET composites behave linear elastically until the fibre-matrix interface fails, at which point the stiffness starts decreasing. As the material is further strained, strain hardening occurs and the specimen finally fails at a global strain above 10%. In compression, the composite initially fails through fibre yielding, and at higher strains through fibre bending. The stress-strain response is reminiscent of an elastic-perfectly plastic material with a high strain to failure (typically over 10%). This indicates that SrPET composites are not only candidates as semi-structural composites but also as highly efficient energy absorbing materials. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development is described of a computer-controlled bowing machine that can bow a string with a range of gestures that match or exceed the capabilities of a human violinist. Example measurements of string vibration under controlled bowing conditions are shown, including a Schelleng diagram and a set of Guettler diagrams, for the open D string of a cello. For some results a rosin-coated rod was used in place of a conventional bow, to provide quantitative data for comparison with theoretical predictions. The results show qualitative consistency with the predictions of Schelleng and Guettler, but details are revealed that go beyond the limitations of existing models. © S. Hirzel Verlag · EAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.