208 resultados para Variable gain amplifier (VGA)
Resumo:
In this presentation, we report excellent electrical and optical characteristics of a dual gate photo thin film transistor (TFT) with bi-layer oxide channel, which was designed to provide virgin threshold voltage (V T) control, improve the negative bias illumination temperature stress (NBITS) reliability, and offer high photoconductive gain. In order to address the photo-sensitivity of phototransistor for the incoming light, top transparent InZnO (IZO) gate was employed, which enables the independent gate control of dual gate photo-TFT without having any degradation of its photosensitivity. Considering optimum initial V T and NBITS reliability for the device operation, the top gate bias was judiciously chosen. In addition, the speed and noise performance of the photo-TFT is competitive with silicon photo-transistors, and more importantly, its superiority lies in optical transparency. © 2011 IEEE.
Resumo:
We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures. © 2012 American Physical Society.
Resumo:
We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures.
Resumo:
A monolithically integrated MLLD-modulator-MOPA is presented generating 12.5 ps pulses. The Mach-Zehnder modulator allows tunable repetition rates from 14 GHz to 109 MHz, and the MOPA boosts the peak power by 3.2 dB. © 2012 IEEE.
Resumo:
It is commonly believed that visual short-term memory (VSTM) consists of a fixed number of "slots" in which items can be stored. An alternative theory in which memory resource is a continuous quantity distributed over all items seems to be refuted by the appearance of guessing in human responses. Here, we introduce a model in which resource is not only continuous but also variable across items and trials, causing random fluctuations in encoding precision. We tested this model against previous models using two VSTM paradigms and two feature dimensions. Our model accurately accounts for all aspects of the data, including apparent guessing, and outperforms slot models in formal model comparison. At the neural level, variability in precision might correspond to variability in neural population gain and doubly stochastic stimulus representation. Our results suggest that VSTM resource is continuous and variable rather than discrete and fixed and might explain why subjective experience of VSTM is not all or none.
Resumo:
This paper introduces a pressure sensing structure configured as a stress sensitive differential amplifier (SSDA), built on a Silicon-on-Insulator (SOI) membrane. Theoretical calculation show the significant increase in sensitivity which is expected from the pressure sensors in SSDA configuration compared to the traditional Wheatstone bridge circuit. Preliminary experimental measurements, performed on individual transistors placed on the membrane, exhibit state-the-art sensitivity values (1.45mV/mbar). © 2012 IEEE.
Resumo:
This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.
Resumo:
When bulk RE-BCO superconductors are used as permanent magnets in engineering applications, they are likely to experience transient variations of the applied magnetic field. The resulting vortex motion may cause a significant temperature increase. As a consequence the initial trapped flux is reduced. In the present work, we first focus on the cause of a temperature increase. The temperature distribution within a superconducting finite cylinder subjected to an alternating magnetic field is theoretically predicted. Results are compared to experimental data obtained by two temperature sensors attached to a bulk YBCO pellet. Second, we consider curative methods for reducing the effect of heat flux on the temperature increase. Hall-probe mappings on YBCO samples maintained out of the thermal equilibrium are performed for two different morphologies : a plain single domain and a single domain with a regularly spaced hole array. The drilled single-domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. © 2006 IOP Publishing Ltd.
Resumo:
It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.
Resumo:
We present quantitative analysis of the ultra-high photoconductivity in amorphous oxide semiconductor (AOS) thin film transistors (TFTs), taking into account the sub-gap optical absorption in oxygen deficiency defects. We analyze the basis of photoconductivity in AOSs, explained in terms of the extended electron lifetime due to retarded recombination as a result of hole localization. Also, photoconductive gain in AOS photo-TFTs can be maximized by reducing the transit time associated with short channel lengths, making device scaling favourable for high sensitivity operation. © 2012 IEEE.
Resumo:
An online scheduling of the parameter ensuring in addition to closed loop stability was presented. Attention was given to saturated linear low-gain control laws. Null controllability of the considered linear systems was assumed. The family of low gain control laws achieved semiglobal stabilization.
Resumo:
This paper presents an analysis of the slow-peaking phenomenon, a pitfall of low-gain designs that imposes basic limitations to large regions of attraction in nonlinear control systems. The phenomenon is best understood on a chain of integrators perturbed by a vector field up(x, u) that satisfies p(x, 0) = 0. Because small controls (or low-gain designs) are sufficient to stabilize the unperturbed chain of integrators, it may seem that smaller controls, which attenuate the perturbation up(x, u) in a large compact set, can be employed to achieve larger regions of attraction. This intuition is false, however, and peaking may cause a loss of global controllability unless severe growth restrictions are imposed on p(x, u). These growth restrictions are expressed as a higher order condition with respect to a particular weighted dilation related to the peaking exponents of the nominal system. When this higher order condition is satisfied, an explicit control law is derived that achieves global asymptotic stability of x = 0. This stabilization result is extended to more general cascade nonlinear systems in which the perturbation p(x, v) v, v = (ξ, u) T, contains the state ξ and the control u of a stabilizable subsystem ξ = a(ξ, u). As an illustration, a control law is derived that achieves global stabilization of the frictionless ball-and-beam model.