229 resultados para Stability margins
Resumo:
At high Reynolds numbers, wake flows become more globally unstable when they are confined within a duct or between two flat plates. At Reynolds numbers around 100, however, global analyses suggest that such flows become more stable when confined, while local analyses suggest that they become more unstable. The aim of this paper is to resolve this apparent contradiction by examining a set of obstacle-free wakes. In this theoretical and numerical study, we combine global and local stability analyses of planar wake flows at $\mathit{Re}= 100$ to determine the effect of confinement. We find that confinement acts in three ways: it modifies the length of the recirculation zone if one exists, it brings the boundary layers closer to the shear layers, and it can make the flow more locally absolutely unstable. Depending on the flow parameters, these effects work with or against each other to destabilize or stabilize the flow. In wake flows at $\mathit{Re}= 100$ with free-slip boundaries, flows are most globally unstable when the outer flows are 50 % wider than the half-width of the inner flow because the first and third effects work together. In wake flows at $\mathit{Re}= 100$ with no-slip boundaries, confinement has little overall effect when the flows are weakly confined because the first two effects work against the third. Confinement has a strong stabilizing effect, however, when the flows are strongly confined because all three effects work together. By combining local and global analyses, we have been able to isolate these three effects and resolve the apparent contradictions in previous work.
Resumo:
Several authors have proposed algorithms for approximate explicit MPC [1],[2],[3]. These algorithms have in common that they develop a stability criterion for approximate explicit MPC that require the approximate cost function to be within a certain distance from the optimal cost function. In this paper, stability is instead ascertained by considering only the cost function of the approximate MPC. If a region of the state space is found where the cost function is not decreasing, this indicates that an improved approximation (to the optimal control) is required in that region. If the approximate cost function is decreasing everywhere, no further refinement of the approximate MPC is necessary, since stability is guaranteed. ©2009 IEEE.
Resumo:
in this paper we investigate the moment asymptotic stability for the nonlinear stochastic hybrid delay systems. Sufficient criteria on the stabilization and robust stability are also established for linear stochastic hybrid delay systems. Copyright © 2005 IFAC.
Resumo:
Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.
The stability of nitrogen-containing amorphous carbon films after annealing at moderate temperatures
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behavior of casing grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading, and the near-casing flow field is then investigated using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. © 2011 American Society of Mechanical Engineers.
Resumo:
This paper concerns the optimisation of casing grooves and the important influence of stall inception mechanism on groove performance. Installing casing grooves is a well known technique for improving the stable operating range of a compressor, but the wide-spread use of grooves is restricted by the loss of efficiency and flow capacity. In this paper, laboratory tests are used to examine the conditions under which casing treatment can be used to greatest effect. The use of a single casing groove was investigated in a recently published companion paper. The current work extends this to multiple-groove treatments and considers their performance in relation to stall inception mechanisms. Here it is shown that the stall margin gain from multiple grooves is less than the sum of the gains if the grooves were used individually. By contrast, the loss of efficiency is additive as the number of grooves increases. It is then shown that casing grooves give the greatest stall margin improvement when used in a compressor which exhibits spike-type stall inception, while modal activity before stall can dramatically reduce the effectiveness of the grooves. This finding highlights the importance of being able to predict the stall inception mechanism which might occur in a given compressor before and after grooves are added. Some published prediction techniques are therefore examined, but found wanting. Lastly, it is shown that casing grooves can, in some cases, be used to remove rotor blades and produce a more efficient, stable and light-weight rotor. © 2010 by ASME.
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behaviour of grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading and the near-casing flow field is then studied using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. Copyright © 2009 Rolls-Royce plc.