191 resultados para Simulation of theoperation of a dam


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Large-Eddy Simulation (LES) and hybrid Reynolds-averaged Navier–Stokes–LES (RANS–LES) methods are applied to a turbine blade ribbed internal duct with a 180° bend containing 24 pairs of ribs. Flow and heat transfer predictions are compared with experimental data and found to be in agreement. The choice of LES model is found to be of minor importance as the flow is dominated by large geometric scale structures. This is in contrast to several linear and nonlinear RANS models, which display turbulence model sensitivity. For LES, the influence of inlet turbulence is also tested and has a minor impact due to the strong turbulence generated by the ribs. Large scale turbulent motions destroy any classical boundary layer reducing near wall grid requirements. The wake-type flow structure makes this and similar flows nearly Reynolds number independent, allowing a range of flows to be studied at similar cost. Hence LES is a relatively cheap method for obtaining accurate heat transfer predictions in these types of flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an extensive analysis of the electroluminescence characteristics of InGaN-based LEDs with color-coded structure, i.e., with a triple quantum well structure in which each quantum well has a different indium content. The analysis is based on combined electroluminescence measurements and two-dimensional simulations, carried out at different current and temperature levels. Results indicate that (i) the efficiency of each of the quantum wells strongly depends on device operating conditions (current and temperature); (ii) at low current and temperature levels, only the quantum well closer to the p-side has a significant emission; (iii) emission from the other quantum wells is favored at high current levels. The role of carrier injection, hole mobility, carrier density and non-radiative recombination in determining the relative intensity of the quantum wells is discussed in the text. © 2013 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a theoretical model for Dicke Superradiance in semiconductor laser devices. Simulations agree well with previously-observed superradiance properties and are used to optimize driving conditions and device geometry. © OSA/ANIC/IPR/Sensors/SL/SOF/SPPCom/2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flame surface density approach to the modeling of premixed turbulent combustion is well established in the context of Reynolds-averaged simulations. For the future, it is necessary to consider large-eddy simulation (LES), which is likely to offer major advantages in terms of physical accuracy, particularly for unsteady combustion problems. LES relies on spatial filtering for the removal of unresolved phenomena whose characteristic length scales are smaller than the computational grid scale. Thus, there is a need for soundly based physical modeling at the subgrid scales. The aim of this paper is to explore the usefulness of the flame surface density concept as a basis for LES modeling of premixed turbulent combustion. A transport equation for the filtered flame surface density is presented, and models are proposed for unclosed terms. Comparison with Reynolds-averaged modeling is shown to reveal some interesting similarities and differences. These were exploited together with known physics and statistical results from experiment and from direct numerical stimulation in order to gain insight and refine the modeling. The model has been implemented in a combustion LES code together with standard models for scalar and momentum transport. Computational results were obtained for a simple three-dimensional flame propagation test problem, and the relative importance of contributing terms in the modeled equation for flame surface density was assessed. Straining and curvature are shown to have a major influence at both the resolved and subgrid levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic model of passive mode-locking in quantum-dot laser diodes is presented. It is found that in contrast with quantum-well lasers, rapid gain recovery is key for mode-locking of quantum-dot lasers. © 2008 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews simulations of integrated components for ultra-short pulse generation and shaping. Optimised component designs are reported, minimising the major impact that chirp and saturation effects have, even where ultra-fast nonlinearities are used. © 2005 OSA/IPRA.