198 resultados para Predictive regression
Resumo:
Delivering acceptable low end torque and good transient response is a significant challenge for all turbocharged engines. As downsized gasoline engines and Diesel engines make up a larger and larger proportion of the light-duty engines entering the market, the issue takes on greater significance. Several schemes have been proposed to improve torque response in highly boosted engines, including the use of electrical assist turbochargers and compressed air assist. In this paper we examine these methods with respect to their effectiveness in improving transient response and their relative performance along with some of the practical considerations for real world application. Results shown in this paper are from 1-D simulations using the Ricardo WAVE software package. The simulation model is based on a production light-duty Diesel engine modified to allow the introduction of compressed air at various points in the air-path as well as direct torque application to the turbocharger shaft (such as might be available from an electrical assist turbocharger). Whilst the 1-D simulation software provides a suitable environment for investigating the various boost assistance options, the overall air path performance also depends upon the control system. The introduction of boost assistance complicates the control in two significant ways: the system may run into constraints (such as compressor surge) that are not encountered in normal operation and the assistance introduces an additional control input. Production engine controllers are usually based on gain-scheduled PID control and extensive calibration. For this study, the non-linear nature of the engine together with the multiple configurations considered and the slower than real-time execution of 1-D models makes such an approach time consuming. Moreover, an ad-hoc approach would leave some doubt as to the fairness of comparisons between the different boost-assist options. Model Predictive Control has been shown to offer a convenient approach to controlling the 1-D simulations in a close to optimal manner for a typical Diesel VGT-EGR air path configuration. We show that the same technique can be applied to all the considered assistance methods with only modest calibration effort required. Copyright © 2012 SAE International.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
An approach to designing a constrained output-feedback predictive controller that has the same small-signal properties as a pre-existing output-feedback linear time invariant controller is proposed. Systematic guidelines are proposed to select an appropriate (non-unique) realization of the resulting state observer. A method is proposed to transform a class of offset-free reference tracking controllers into the combination of an observer, steady-state target calculator and predictive controller. The procedure is demonstrated with a numerical example. © 2013 IEEE.
Resumo:
Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.
Resumo:
We demonstrate how the Gaussian process regression approach can be used to efficiently reconstruct free energy surfaces from umbrella sampling simulations. By making a prior assumption of smoothness and taking account of the sampling noise in a consistent fashion, we achieve a significant improvement in accuracy over the state of the art in two or more dimensions or, equivalently, a significant cost reduction to obtain the free energy surface within a prescribed tolerance in both regimes of spatially sparse data and short sampling trajectories. Stemming from its Bayesian interpretation the method provides meaningful error bars without significant additional computation. A software implementation is made available on www.libatoms.org.
Resumo:
We demonstrate how a prior assumption of smoothness can be used to enhance the reconstruction of free energy profiles from multiple umbrella sampling simulations using the Bayesian Gaussian process regression approach. The method we derive allows the concurrent use of histograms and free energy gradients and can easily be extended to include further data. In Part I we review the necessary theory and test the method for one collective variable. We demonstrate improved performance with respect to the weighted histogram analysis method and obtain meaningful error bars without any significant additional computation. In Part II we consider the case of multiple collective variables and compare to a reconstruction using least squares fitting of radial basis functions. We find substantial improvements in the regimes of spatially sparse data or short sampling trajectories. A software implementation is made available on www.libatoms.org.
Resumo:
A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.
Resumo:
The solution time of the online optimization problems inherent to Model Predictive Control (MPC) can become a critical limitation when working in embedded systems. One proposed approach to reduce the solution time is to split the optimization problem into a number of reduced order problems, solve such reduced order problems in parallel and selecting the solution which minimises a global cost function. This approach is known as Parallel MPC. The potential capabilities of disturbance rejection are introduced using a simulation example. The algorithm is implemented in a linearised model of a Boeing 747-200 under nominal flight conditions and with an induced wind disturbance. Under significant output disturbances Parallel MPC provides a significant improvement in performance when compared to Multiplexed MPC (MMPC) and Linear Quadratic Synchronous MPC (SMPC). © 2013 IEEE.
Resumo:
Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force IGBT to follow a pre-set switching trajectory. The initial objective of AVC was mainly to synchronise the switching of IGBTs connected in series so as to realise voltage balancing between devices. For a single IGBT switching, the AVC reference needs further optimisation. Thus, a predictive manner of AVC reference generation is required to cope with the nonlinear IGBT switching parameters while performing low loss switching. In this paper, an improved AVC structure is adopted along with a revised reference which accommodates the IGBT nonlinearity during switching and is predictive based on current being switched. Experimental and simulation results show that close control of a single IGBT switching is realised. It is concluded that good performance can be obtained, but the proposed method needs careful stability analysis for parameter choice. © 2013 IEEE.
Resumo:
Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. This paper presents the beginnings of an automatic statistician, focusing on regression problems. Our system explores an open-ended space of statistical models to discover a good explanation of a data set, and then produces a detailed report with figures and natural- language text. Our approach treats unknown regression functions non- parametrically using Gaussian processes, which has two important consequences. First, Gaussian processes can model functions in terms of high-level properties (e.g. smoothness, trends, periodicity, changepoints). Taken together with the compositional structure of our language of models this allows us to automatically describe functions in simple terms. Second, the use of flexible nonparametric models and a rich language for composing them in an open-ended manner also results in state- of-the-art extrapolation performance evaluated over 13 real time series data sets from various domains.
Resumo:
A method is proposed for on-line reconfiguration of the terminal constraint used to provide theoretical nominal stability guarantees in linear model predictive control (MPC). By parameterising the terminal constraint, its complete reconstruction is avoided when input constraints are modified to accommodate faults. To enlarge the region of feasibility of the terminal control law for a certain class of input faults with redundantly actuated plants, the linear terminal controller is defined in terms of virtual commands. A suitable terminal cost weighting for the reconfigurable MPC is obtained by means of an upper bound on the cost for all feasible realisations of the virtual commands from the terminal controller. Conditions are proposed that guarantee feasibility recovery for a defined subset of faults. The proposed method is demonstrated by means of a numerical example. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control. © 2013 IEEE.