201 resultados para Polymer gel dosimetry
Resumo:
Plastics packaging is ubiquitous in the food industry, fulfilling a range of functions including a significant role in reducing food waste. The public perception of packaging, however, is dominated by end-of-life aspects, when the packaging becomes waste often found littering urban, rural and marine environments. A balanced analysis of the role of packaging demands that the whole lifecycle is examined, looking not only at the packaging itself but also at the product being packaged. This paper focuses on packaging in the meat and cheese industry, analysing the impact of films and bags. The functions of packaging are defined and the environmental impact of delivering these functions is assessed. The influence of packaging on levels of waste and energy consumption elsewhere in the system is examined, including the contentious issue of end-of-life for packaging. Strategies for minimizing the environmental impact of the packaging itself involve reduction in the amount of material used (thinner packaging), rather than emphasizing end-of-life issues. Currently, with polymer recycling not at a high level, evidence suggests that this strategy is justifiable. Biodegradable polymers may have some potential for improving environmental performance, but are still problematic. The conclusion is that although current packaging is in some ways wasteful and inefficient, the alternatives are even less desirable. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The results of an experimental and numerical investigation involving unstrengthened reinforced concrete (RC) T-beams and precracked RC T-beams strengthened in shear with prestressed carbon fiber-reinforced polymer (CFRP) straps are presented and discussed. The results provide insights into the influence of load history and beam depth on the structural behavior of both unstrengthened and strengthened beams. The strengthened beams exhibited capacity enhancements of 21.6 to 46% compared to the equivalent unstrengthened beams, demonstrating the potential effectiveness of the prestressed CFRP strap system. Nonlinear finite element (FE) predictions, which incorporated the load history, reproduced the observed experimental behavior but either underestimated or overestimated the post-cracking stiffness of the beams and strap strain at higher load levels. These limitations were attributed to the concrete shear models used in the FE analyses.
Resumo:
A severe shortage of donor cornea is now an international crisis in public health. Substitutes for donor tissue need to be developed to meet the increasing demand for corneal transplantation. Current attempts in designing scaffolds for corneal tissue regeneration involve utilization of expensive materials. Yet, these corneal scaffolds still lack the highly-organized fibrous structure that functions as a load-bearing component in the native tissue. This work shows that transparent nanofiber-reinforced hydrogels could be developed from cheap, non-immunogenic and readily available natural polymers to mimic the cornea's microstructure. Electrospinning was employed to produce gelatin nanofibers, which were then infiltrated with alginate hydrogels. Introducing electrospun nanofibers into hydrogels improved their mechanical properties by nearly one order of magnitude, yielding mechanically robust composites. Such nanofiber-reinforced hydrogels could serve as alternatives to donor tissue for corneal transplantation.
Resumo:
Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplanes as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, we present a 40 Gb/s optical backplane demonstrator based on the use of polymer multimode waveguides and a regenerative shared bus architecture. The system allows bus extension by cascading multiple polymeric bus modules through 3R regenerator units enabling the connection of an arbitrary number of electrical cards onto the bus. The proof-ofprinciple demonstrator reported here is formed with low-cost, commercially-available active devices and electronic components mounted on conventional FR4 substrates and achieves error-free 4×10 Gb/s optical interconnection between any two card interfaces on the bus. © 2013 IEEE.
Resumo:
Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications.
Resumo:
Multimode polymer waveguides are an attractive transmission medium for board-level optical links as they provide high bandwidth, relaxed alignment tolerances, and can be directly integrated onto conventional printed circuit boards. However, the performance of multimode waveguide components depends on the launch conditions at the component input, complicating their use in topologies that require the concatenation of multiple multimode components. This paper presents key polymer components for a multichannel optical bus and reports their performance under different launch conditions, enabling useful rules that can be used to design complex interconnection topologies to be derived. The components studied are multimode signal splitters and combiners, 90°-crossings, S-bends, and 90°-bends. By varying the width of the splitter arms, a splitting ratio between 1% and 95% is achieved from the 1 × 2 splitters, while low-loss signal combining is demonstrated with the waveguide combiners. It is shown that a 3 dB improvement in the combiner excess loss can be achieved by increasing the bus width by 50 μm. The worst-case insertion loss of 50 × 100 μm waveguide crossings is measured to be 0.1 dB/crossing. An empirical method is proposed and used to estimate the insertion losses of on-board optical paths of a polymeric four-channel optical bus module. Good agreement is achieved between the predicted and measured values. Although the components and empirical method have been tailored for use in a multichannel optical bus architecture, they can be used for any on-board optical interconnection topology. © 1983-2012 IEEE.
Resumo:
The design and characterization of polymer-based multimode 90°-crossings, combinersand splitters exhibiting excess losses below 0.1 dB/crossing, 2 dB and 3 dB respectively arereported. The devices enable the realization of an on-board optical bus. © OSA 2012.
Resumo:
We describe studies of new nanostructured materials consisting of carbon nanotubes wrapped in sequential coatings of two different semiconducting polymers, namely, poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT). Using absorption spectroscopy and steady-state and ultrafast photoluminescence measurements, we demonstrate the role of the different layer structures in controlling energy levels and charge transfer in both solution and film samples. By varying the simple solution processing steps, we can control the ordering and proportions of the wrapping polymers in the solid state. The resulting novel coaxial structures open up a variety of new applications for nanotube blends and are particularly promising for implementation into organic photovoltaic devices. The carbon nanotube template can also be used to optimize both the electronic properties and morphology of polymer composites in a much more controlled fashion than achieved previously, offering a route to producing a new generation of polymer nanostructures.
Resumo:
We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.
Resumo:
Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.
Resumo:
The first multi-channel optical backplane demonstrator using on-board multimode polymer waveguides and a scalable shared-bus regenerative architecture is reported. The system allows bus extension by cascading multiple polymeric bus modules, and enables error-free 4×10 Gb/s interconnection between any two card interfaces on the bus.
Resumo:
An optical waveguide sensor formed directly on low-cost PCB substrates is presented for the first time. The device integrates polymer waveguides functionalized with chemical dyes, photonic and electronic components and allows multiple-gas detection. © OSA/CLEO 2011.
Resumo:
Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.
Resumo:
Glass and polymer interstacked superlattice like nanolayers were fabricated by nanosecond-pulsed laser deposition with a 193-nm-ultraviolet laser. The individual layer thickness of this highly transparent thin film could be scaled down to 2 nm, proving a near atomic scale deposition of complex multilayered optical and electronic materials. The layers were selectively doped with Er3\+ and Eu3\+ ions, making it optically active and targeted for integrated sensor application. © The Authors.