213 resultados para INSPIRATORY OFF-SWITCH
Resumo:
With series insulated-gate bipolar transistor (IGBT) operation, well-matched gate drives will not ensure balanced dynamic voltage sharing between the switching devices. Rather, it is IGBT parasitic capacitances, mainly gate-to-collector capacitance Cgc, that dominate transient voltage sharing. As Cgc is collector voltage dependant and is significantly larger during the initial turn-off transition, it dominates IGBT dynamic voltage sharing. This paper presents an active control technique for series-connected IGBTs that allows their dynamic voltage transition dV\ce/dt to adaptively vary. Both switch ON and OFF transitions are controlled to follow a predefined dVce/dt. Switching losses associated with this technique are minimized by the adaptive dv /dt control technique incorporated into the design. A detailed description of the control circuits is presented in this paper. Experimental results with up to three series devices in a single-ended dc chopper circuit, operating at various low voltage and current levels, are used to illustrate the performance of the proposed technique. © 2012 IEEE.
High-Performance, Low-Operating-Voltage Organic Field-Effect Transistors with Low Pinch-Off Voltages
Resumo:
A novel mechanical method of achieving a rapid switch between stoichiometric and lean conditions for SI engines is explored. Two and three throttle configurations, a switch strategy which employs a standard intake manifold and an assembly of pipes and throttle(s), are investigated numerically by using a one-dimensional engine simulation program based on the method of characteristics. The results indicate that it is possible to achieve rapid AFR switch without a torque jump, i.e. unperceptible to the driver. © 1998 Society of Automotive Engineers, Inc.
Resumo:
Increasing pressure on lowering vehicle exhaust emissions to meet stringent California and Federal 1993/1994 TLEV emission standards of 0.125 gpm NMOG, 3.4 gpm CO and 0.4 gpm NOx and future ULEV emission standards of 0.04 gpm NMOG, 1.7 gpm CO and 0.2 gpm NOx has focused specific attention on the cold start characteristics of the vehicle's emission system, especially the catalytic converter. From test data it is evident that the major portion of the total HC and CO emissions occur within the first two minutes of the driving cycle while the catalyst is heating up to operating temperature. The use of an electrically heated catalyst (EHC) has been proposed to alleviate this problem but the cost and weight penalties are high and the durability has yet to be fully demonstrated (1)*. This paper describes a method of reducing the light-off time of the catalytic converter to less than 20 seconds by means of an afterburner. The system uses exhaust gases from the engine calibrated to run rich and additional air injected into the exhaust gas stream to form a combustible mixture. The key feature concerns the method of making this combustible mixture ignitable within 2 seconds from starting the engine when the exhaust gases arriving at the afterburner are cold and essentially non-reacting. © Copyright 1992 Society of Automotive Engineers, Inc.
Resumo:
We use the qualitative insight of a planar neuronal phase portrait to detect an excitability switch in arbitrary conductance-based models from a simple mathematical condition. The condition expresses a balance between ion channels that provide a negative feedback at resting potential (restorative channels) and those that provide a positive feedback at resting potential (regenerative channels). Geometrically, the condition imposes a transcritical bifurcation that rules the switch of excitability through the variation of a single physiological parameter. Our analysis of six different published conductance based models always finds the transcritical bifurcation and the associated switch in excitability, which suggests that the mathematical predictions have a physiological relevance and that a same regulatory mechanism is potentially involved in the excitability and signaling of many neurons. © 2013 Franci et al.
Resumo:
There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.
Resumo:
Due to their potential for significant fuel consumption savings, Counter-Rotating Open Rotors (CRORs) are currently being considered as an alternative to high-bypass turbofans. When CRORs are mounted on an aircraft, several 'installation effects' arise which are not present when the engine is operated in isolation. This paper investigates how flow features arising from one such effect - The angle-of-attack of the engine centre-line relative to the oncoming flow - can influence the design of CROR engines. Three-dimensional full-annulus unsteady CFD simulations are used to predict the time-varying flow field experienced by each rotor and emphasis is put on the interaction of the frontrotor wake and tip vortex with the rear-rotor. A parametric study is presented that quantifies the rotorrotor interaction as a function of the angle-of-attack. It is shown that angle-of-attack operation significantly changes the flow field and the unsteady lift on both rotors. In particular, a frequency analysis shows that the unsteady lift exhibits sidebands around the rotor-rotor interaction frequencies. Further, a non-linear increase in the total rear-rotor tip unsteadiness is observed for moderate and high angles-of-attack. The results presented in this paper demonstrate that common techniques used to mitigate CROR noise, such as modifying the rotor-rotor axial spacing and rear-rotor crop, can not be applied correctly unless angle-of-attack effects are taken into account. Copyright © 2012 by ASME.
Resumo:
The behavior of the drain voltage rise of the Lateral IGBT during inductive turn-off is studied in detail. Numerical simulations show that, if compared with the well known vertical IGBT, the Lateral IGBT presents a differences in the on-state stored charge and in the growth of the depleted region that result in a different drain voltage rise. In this paper a complete model for the voltage rise is devised through an accurate calculation of the equivalent output capacitance. The model is in excellent agreement with two-dimensional simulations. Further, the paper shows that previously proposed models, which targeted the vertical IGBT, are not adequate for the description of the turn-off voltage rise in the Lateral IGBT. © Springer Science + Business Media LLC 2006.
Resumo:
A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach-Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than -50 dB can be achieved using a 2 × 2 dilated hybrid switch module. A 'building block' approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 × 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches. © 1983-2012 IEEE.
Resumo:
A hybrid crosspoint switch combining MZI and SOA components is proposed, which for a 2×2 port switch primitive implementation e×hibits crosstalk of -46dB. This architecture makes port count up to 64×64 feasible. © OSA 2013.