206 resultados para Heat sources
Resumo:
Transient flows in a confined ventilated space induced by a buoyancy source of time-varying strength and an external wind are examined. The space considered has varying cross-sectional area with height. A generalised theoretical model is proposed to investigate the flow dynamics following the activation of an external wind and an internal source of buoyancy. To investigate the effect of geometry, we vary the angle of the wall inclination of a particular geometry in which a point source of constant buoyancy is activated in the absence of wind. Counter-intuitively the ventilation is worse and lower airflow rates are established for geometries of increasing cross-sectional areas with height. We investigate the effect of the source buoyancy strength by comparing two cases: (1) when the buoyancy input is constant and (2) when the buoyancy input gradually increases over time so that after a finite time the total buoyancy inputs for (1) and (2) are identical. The rate at which the source heat gains are introduced has a significant role on the flow behaviour as we find that, in case (2), a warmer layer and a more pronounced overshoot are obtained than in case (1). The effect of assisting and opposing wind on the transient ventilation of an enclosure of constant cross-sectional area with height and constant heat gains is examined. A Froude number Fr is used to define the relative strengths of the buoyancy-induced and wind-induced velocities and five different transient states and their associated critical Fr are identified. © 2010 Elsevier Ltd.
Resumo:
The three effectiveness measures based on the ability of a flow to flush buoyancy from a ventilated space proposed by Coffey and Hunt [Ventilation effectiveness measures based on heat removal-part 1. Definitions. Building and Environment, in press, doi:10.1016/j.buildenv.2006.03.016.] are applied to assess and compare two fundamental natural ventilation flows. We focus on the limiting cases of passive displacement and passive mixing ventilation flows during transient conditions. These transient flows occur when, for example, heat is purged from a building at night. Whilst it is widely recognised that mixing flows are less efficient at purging heat than displacement flows, our results indicate that, when a particular zone of a room is considered, displacement ventilation can result in lower effectiveness than mixing ventilation. When a room is considered as a whole, displacement ventilation yields higher effectiveness than mixing ventilation and we quantify these differences in terms of the geometry of the space and opening area. The proposed theoretical predictions are compared with effectiveness deduced from measurements made during laboratory experiments and show good agreement. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The effectiveness of ventilation flows is considered from the perspective of buoyancy (or heat) removal from a space. This perspective is distinct from the standard in which the effectiveness is based on the concentrations of a neutrally buoyant contaminant/passive tracer. Three new measures of effectiveness are proposed based on the ability of a flow to flush buoyancy from a ventilated space. These measures provide estimates of instantaneous and time-averaged effectiveness for the entire space, and local effectiveness at any height of interest. From a generalisation of the latter, a vertical profile of effectiveness is defined. These measures enable quantitative comparisons to be made between different flows and they are applicable when there is a difference in density (as is typical due to temperature differences) between the interior environment and the replacement air. Applications, therefore, include natural ventilation, hybrid ventilation and a range of forced ventilation flows. Finally, we demonstrate how the ventilation effectiveness of a room may be assessed from simple traces of temperature versus time. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The airflow and thermal stratification produced by a localised heat source located at floor level in a closed room is of considerable practical interest and is commonly referred to as a 'filling box'. In rooms with low aspect ratios H/R ≲ 1 (room height H to characteristic horizontal dimension R) the thermal plume spreads laterally on reaching the ceiling and a descending horizontal 'front' forms separating a stably stratified, warm upper region from cooler air below. The stratification is well predicted for H/R ≲ 1 by the original filling box model of Baines and Turner (J. Fluid. Mech. 37 (1968) 51). This model represents a somewhat idealised situation of a plume rising from a point source of buoyancy alone-in particular the momentum flux at the source is zero. In practical situations, real sources of heating and cooling in a ventilation system often include initial fluxes of both buoyancy and momentum, e.g. where a heating system vents warm air into a space. This paper describes laboratory experiments to determine the dependence of the 'front' formation and stratification on the source momentum and buoyancy fluxes of a single source, and on the location and relative strengths of two sources from which momentum and buoyancy fluxes were supplied separately. For a single source with a non-zero input of momentum, the rate of descent of the front is more rapid than for the case of zero source momentum flux and increases with increasing momentum input. Increasing the source momentum flux effectively increases the height of the enclosure, and leads to enhanced overturning motions and finally to complete mixing for highly momentum-driven flows. Stratified flows may be maintained by reducing the aspect ratio of the enclosure. At these low aspect ratios different long-time behaviour is observed depending on the nature of the heat input. A constant heat flux always produces a stratified interior at large times. On the other hand, a constant temperature supply ultimately produces a well-mixed space at the supply temperature. For separate sources of momentum and buoyancy, the developing stratification is shown to be strongly dependent on the separation of the sources and their relative strengths. Even at small separation distances the stratification initially exhibits horizontal inhomogeneity with localised regions of warm fluid (from the buoyancy source) and cool fluid. This inhomogeneity is less pronounced as the strength of one source is increased relative to the other. Regardless of the strengths of the sources, a constant buoyancy flux source dominates after sufficiently large times, although the strength of the momentum source determines whether the enclosure is initially well mixed (strong momentum source) or stably stratified (weak momentum source). © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Numerical methods based on the Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) equations are applied to the thermal prediction of flows representative of those found in and around electronics systems and components. Low Reynolds number flows through a heated ribbed channel, around a heated cube and within a complex electronics system case are investigated using linear and nonlinear LES models, hybrid RANS-LES and RANS-Numerical-LES (RANS-NLES) methods. Flow and heat transfer predictions using these techniques are in good agreement with each other and experimental data for a range of grid resolutions. Using second order central differences, the RANS-NLES method performs well for all simulations. © 2011 Elsevier Inc.
Resumo:
The paper discusses measurements of heat transfer obtained from the inside surface of the peripheral shroud. The experiments were carried out on a rotating cavity, comprising two 0.985-m-dia disks, separated by an axial gap of 0.065 m and bounded at the circumference by a carbon fiber shroud. Tests were conducted with a heated shroud and either unheated or heated disks. When heated, the disks had the same temperature level and surface temperature distribution. Two different temperature distributions were tested; the surface temperature either increased, or decreased with radius. The effects of disk, shroud, and air temperature levels were also studied. Tests were carried out for the range of axial throughflow rates and speeds: 0.0025 ≤ m ≤ 0.2 kg/s and 12.5 ≤ Ω ≤ 125 rad/s, respectively. Measurements were also made of the temperature of the air inside the cavity. The shroud Nusselt numbers are found to depend on a Grashof number, which is defined using the centripetal acceleration. Providing the correct reference temperature is used, the measured Nusselt numbers also show similarity to those predicted by an established correlation for a horizontal plate in air. The heat transfer from the shroud is only weakly affected by the disk surface temperature distribution and temperature level. The heat transfer from the shroud appears to be affected by the Rossby number. A significant enhancement to the rotationally induced free convection occurs in the regions 2 ≤ Ro ≤ 4 and Ro ≥ 20. The first of these corresponds to a region where vortex breakdown has been observed. In the second region, the Rossby number may be sufficiently large for the central throughflow to affect the shroud heat transfer directly. Heating the shroud does not appear to affect the heat transfer from the disks significantly.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.