213 resultados para Force plate


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to see. All of the parts but one are off the shelf, and assembly time is generally less than two days, which makes the microscope a robust instrument that is readily handled by the students with little chance of damage. While the scanning resolution is nowhere near that of a commercial instrument, it is more than sufficient to take interesting scans of micrometer-scale objects. A survey of students after their having used the AFM resulted in a generally good response, with 80% agreeing that they had a positive learning experience. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tubular permanent magnet linear generators are a promising generator technology for use in marine renewables. One aspect of their design relates to the conditions necessary for achieving a smooth thrust response from the generator, free from cogging and periodic variations due to spatial harmonics of the flux cutting the generator coils. This paper presents an experimental and finite element study of the sources of thrust ripple in a prototype linear generator for marine generation. A simple self-commutated control scheme is shown, which uses linear Hall-effect sensors and look-up-table based feed-forward compensation to derive the excitation currents required to drive the machine with constant force. Details of the controller's FPGA based implementation are given, including its strategy for detecting sensor failure. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swaging is a cold working process involving plastic deformation of the work piece to change its shape. A swaged joint is a connection between two components whereby a swaging tool induces plastic deformation of the components at their junction to effectively bind them together. This is commonly used when welding or other standard joining techniques are not viable. Swaged joints can be found for example, in nuclear fuel assemblies to connect the edges of thin rectangular plates to a supporting structure or frame. The aim of this work is to find a model to describe the vibrational behaviour of a swaged joint and to estimate its strength in resisting a longitudinally applied load. The finite element method and various experimental rigs were used in order to find relationships between the natural frequencies of the plate, the joint stiffness and the force required to shift the plate against the restraining action of the swage connection. It is found that a swaged joint is dynamically equivalent to a simple support with the rotation elastically restrained and a small stiffness is enough to resist an important load. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the characteristics of the impact force produced when two randomly vibrating elastic bodies collide with each other, or when a single randomly vibrating elastic body collides with a stop. The impact condition includes a non-linear spring, which may represent, for example, a Hertzian contact, and in the case of a single body, closed form approximate expressions are derived for the duration and magnitude of the impact force and for the maximum deceleration at the impact point. For the case of two impacting bodies, a set of algebraic equations are derived which can be solved numerically to yield the quantities of interest. The approach is applied to a beam impacting a stop, a plate impacting a stop, and to two impacting beams, and in each case a comparison is made with detailed numerical simulations. Aspects of the statistics of impact velocity are also considered, including the probability that the impact velocity will exceed a specified value within a certain time. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of cantilever parameters is an essential part of performing a calibrated measurement with an atomic force microscope (AFM). The thermal motion method is a widely used technique for calibrating the spring constant of an AFM cantilever, which can be applied to non-rectangular cantilevers. Given the trend towards high frequency scanning, calibration of non-rectangular cantilevers is of increasing importance. This paper presents two results relevant to cantilever calibration via the thermal motion method. We demonstrate the possibility of using the AFM's phase signal to acquire the thermal motion. This avoids the challenges associated with connecting the raw photodiode signal to a separate spectrum analyser. We also describe how numerical calculations may be used to calculate the parameters needed in a thermal motion calibration of a non-rectangular cantilever. Only accurate knowledge of the relative size of the in-plane dimensions of the cantilever is needed in this computation. We use this pair of results in the calibration of a variety of rectangular and non-rectangular cantilevers. We observe an average difference between the Sader and thermal motion values of cantilever stiffness of 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the estimation of statistics of displacement of a vibrating rectangular plate with random wave scatterers. The influence of uncertainty is investigated using point impedance theory. Coherent boundary effects are seen, which decrease when the number of scatterers increases. The boundary effect is investigated using images and the first side and corner reflections are found to be a minimum requirement to estimate the spatial correlation. Statistics for point driven response are investigated under the assumption that the statistics of the natural frequencies follow those of the Gaussian Orthogonal Ensemble (GOE). The estimates are compared with Monte Carlo simulation results, and they show good agreement. © 2012 Elsevier Ltd. All rights reserved.