240 resultados para Electrochemical deposition


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotubes (VA-CNTs) were rapidly grown from ethanol and their chemistry has been studied using a "cold-gas" chemical vapor deposition (CVD) method. Ethanol vapor was preheated in a furnace, cooled down and then flowed over cobalt catalysts upon ribbon-shaped substrates at 800 °C, while keeping the gas unheated. CNTs were obtained from ethanol on a sub-micrometer scale without preheating, but on a millimeter scale with preheating at 1000 °C. Acetylene was predicted to be the direct precursor by gas chromatography and gas-phase kinetic simulation, and actually led to millimeter-tall VA-CNTs without preheating when fed with hydrogen and water. There was, however a difference in CNT structure, i.e. mainly few-wall tubes from pyrolyzed ethanol and mainly single-wall tubes for unheated acetylene, and the by-products from ethanol pyrolysis possibly caused this difference. The "cold-gas" CVD, in which the gas-phase and catalytic reactions are separately controlled, allowed us to further understand CNT growth. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes an experimental and theoretical study of the deposition of small spherical particles from a turbulent air flow in a curved duct. The objective was to investigate the interaction between the streamline curvature of the primary flow and the turbulent deposition mechanisms of diffusion and turbophoresis. The experiments were conducted with particles of uranine (used as a fluorescent tracer) produced by an aerosol generator. The particles were entrained in an air flow which passed vertically downwards through a long straight channel of rectangular cross-section leading to a 90° bend. The inside surfaces of the channel and bend were covered with tape to collect the deposited particles. Following a test run the tape was removed in sections, the uranine was dissolved in sodium hydroxide solution and the deposition rates established by measuring the uranine concentration with a luminescence spectrometer. The experimental results were compared with calculations of particle deposition in a curved duct using a computer program that solved the ensemble-averaged particle mass and momentum conservation equations. A particle density-weighted averaging procedure was used and the equations were expressed in terms of the particle convective, rather than total, velocity. This approach provided a simpler formulation of the particle turbulence correlations generated by the averaging process. The computer program was used to investigate the distance required to achieve a fully-developed particle flow in the straight entry channel as well as the variation of the deposition rate around the bend. The simulations showed good agreement with the experimental results. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a large improvement in the wetting of Al 2O 3 thin films grown by un-seeded atomic layer deposition on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al 2O 3/graphene stack is then transferred to SiO 2 by standard methods. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical double-layer capacitors owe their large capacitance to the formation of a double-layer at the electrode/electrolyte interface of high surface area carbon-based electrode materials. Greater electrical energy storage capacity has been attributed to transition metal oxides/nitrides that undergo fast, reversible redox reactions at the electrode surface (pseudo-capacitive behavior) in addition to forming electrical double-layers. Solution Precursor Plasma Spray (SPPS) has shown promise for depositing porous, high surface area transition metal oxides. This investigation explored the potential of SPPS to fabricate a-MoO 3 coatings with micro-structures suitable for use as super-capacitor electrodes. The effects of number of spray passes, spray distance, solution concentration, flow rate and spray velocity on the chemistry and micro-structure of the a-MoO 3 deposits were examined. DTA/TGA, SEM, XRD, and electrochemical analyses were performed to characterize the coatings. The results demonstrate the importance of post-deposition heating of the deposit by subsequent passes of the plasma on the coating morphology. © ASM International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large area uniform nanocrystalline graphene is grown by chemical vapor deposition on arbitrary insulating substrates that can survive ∼1000°C. The as-synthesized graphene is nanocrystalline with a domain size in the order of ∼10 nm. The material possesses a transparency and conductivity similar to standard graphene fabricated by exfoliation or catalysis. A noncatalytic mechanism is proposed to explain the experimental phenomena. The developed technique is scalable and reproducible, compatible with the existing semiconductor technology, and thus can be very useful in nanoelectronic applications such as transparent electronics, nanoelectromechanical systems, as well as molecular electronics. © 2012 IEEE.