199 resultados para ELASTIC SCATTERING
Resumo:
The pressure behavior of Raman frequencies and line widths of crystalline core-amorphous shell silicon nanowires (SiNWs) with two different core-to-shell ratio thicknesses was studied at pressures up to 8 GPa. The obtained isothermal compressibility (bulk modulus) of SiNWs with a core-to-shell ratio of about 1.8 is ∼20% higher (lower) than reported values for bulk Si. For SiNWs with smaller core-to-shell ratios, a plastic deformation of the shell was observed together with a strain relaxation. A significant increase in the full width at half-maximum of the Raman LTO-peak due to phonon decay was used to determine the critical pressure at which LTO-phonons decay into LO + TA phonons. Our results reveal that this critical pressure in strained core-shell SiNWs (∼4 GPa) is different from the reported value for bulk Si (∼7 GPa), whereas no change is observed for relaxed core-shell SiNWs. © 2013 American Chemical Society.
Resumo:
An ultrasound image is created from backscattered echoes originating from both diffuse and directional scattering. It is potentially useful to separate these two components for the purpose of tissue characterization. This article presents several models for visualization of scattering fields on 3-dimensional (3D) ultrasound imaging. By scanning the same anatomy from multiple directions, we can observe the variation of specular intensity as a function of the viewing angle. This article considers two models for estimating the diffuse and specular components of the backscattered intensity: a modification of the well-known Phong reflection model and an existing exponential model. We examine 2-dimensional implementations and also propose novel 3D extensions of these models in which the probe is not constrained to rotate within a plane. Both simulation and experimental results show that improved performance can be achieved with 3D models. © 2013 by the American Institute of Ultrasound in Medicine.
Resumo:
Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.
Resumo:
The magnetic, electrical and thermal transport properties of the perovskite La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the "double-bump" feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T) are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system. © 2005 Chinese Physical Society and IOP Publishing Ltd.
Resumo:
We determine the Raman scattering efficiency of the G and 2D peaks in graphene. Three substrates are used: silicon covered with 300 or 90 nm oxide, and calcium fluoride (CaF2). On Si/SiOx, the areas of the G and 2D peak show a strong dependence on the substrate due to interference effects, while on CaF2 no significant dependence is detected. Unintentional doping is reduced by placing graphene on CaF2. We determine the Raman scattering efficiency by comparison with the 322 cm -1 peak area of CaF2. At 2.41 eV, the Raman efficiency of the G peak is ∼200×10-5 m-1Sr-1, and changes with the excitation energy to the power of 4. The 2D Raman efficiency is at least one order of magnitude higher than that of the G peak, with a different excitation energy dependence. © 2013 American Physical Society.
Resumo:
Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.
Resumo:
Fano resonances and their strong doping dependence are observed in Raman scattering of single-layer graphene (SLG). As the Fermi level is varied by a back-gate bias, the Raman G band of SLG exhibits an asymmetric line shape near the charge neutrality point as a manifestation of a Fano resonance, whereas the line shape is symmetric when the graphene sample is electron or hole doped. However, the G band of bilayer graphene (BLG) does not exhibit any Fano resonance regardless of doping. The observed Fano resonance can be interpreted as interferences between the phonon and excitonic many-body spectra in SLG. The absence of a Fano resonance in the Raman G band of BLG can be explained in the same framework since excitonic interactions are not expected in BLG. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of scattered aerodynamic noise. The scattering problem is solved using the Wiener-Hopf technique for constant plate properties to identify their scaling dependence on the resulting aerodynamic noise, including the dependence on flight velocity, where special attention is paid to the limiting cases of rigid, porous and elastic, impermeable plate conditions. Results from these analyses attempt to address how trailing edge noise may be mitigated by porosity and seek to deepen the understanding of how owls hunt in acoustic stealth. © 2012 by Justin W. Jaworski and Nigel Peake. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.
Resumo:
The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The edge is modelled as a thin plate poroelastic plate, which is known to admit fifth-, sixth-, and seventh-power noise dependences on a characteristic velocity U of the turbulent eddy. The associated acoustic scattering problem is solved using the Wiener-Hopf technique for the case of constant plate properties. For the special cases of porous-rigid and impermeable-elastic plate conditions, asymptotic analysis of the Wiener- Hopf kernel function furnishes the parameter groups and their ranges where U5, U6, and U7 behaviours are expected to occur. Results from this analysis attempt to help guide the search for passive edge treatments to reduce trailing-edge noise that are inspired by the wing features of silently flying owls. Furthermore, the appropriateness of the present model to the owl noise problem is discussed with respect to the acoustic frequencies of interest, wing chord-lengths, and foraging behaviour across a representative set of owl species.
Resumo:
Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.
Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil
Resumo:
An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavity-expansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.
Resumo:
Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.