194 resultados para radiation transmission
Resumo:
We propose an uncooled DWDM system where errors from uncontrolled laser mode-hopping are avoided by using a control protocol based on monitoring SMSR. We describe a proof-of-principle demonstration of a novel uncooled 50GHz DWDM system. © 2011 IEEE.
Resumo:
Acoustic radiation from a structure can be expressed in terms of modal radiation and modal coefficients. This paper investigates the contributions of these two modal properties to radiation excited by a point force. Sound radiation from two basic structures is considered: a baffled rectangular plate and a closed spherical shell. The plate behaviour is familiar, and governed by the relation between the natural frequency of a mode and its coincidence frequency. For a closed spherical shell, there are either zero or two critical frequencies, depending on the radius and thickness. When there are two the shell radiates well both above and below the two frequencies, and poorly in the frequency range between them. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.
Resumo:
We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.
Resumo:
The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.
Resumo:
We report the operation of a gigahertz clocked quantum key distribution system, with two classical data communication channels using coarse wavelength division multiplexing over a record fibre distance of 80km. © 2012 OSA.
Resumo:
Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.
Resumo:
This paper investigates the circumstances under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Motivating examples include the design of packaging for transportation of fragile items. The system is modelled in an idealised form using two beams coupled with point connections. A Rayleigh-Ritz model of such coupled beams was validated against measurements on a particular beam system, then the model was used to explore the acceleration response to impulsive driving in the time, frequency and spatial domains. This study is restricted to linear vibration response and additional mechanisms for high internal acceleration due to nonlinear effects such as internal impacts are not considered. Using Monte Carlo simulation in which the indirectly driven beam was perturbed by randomly placed point masses a wide range of system behaviour was explored. This facilitates identification of vulnerable configurations that can lead to high internal acceleration. The results from the study indicate the possibility of curve veering influencing the peak acceleration amplification. The possibility of veering within an ensemble was found to be dependent on the relative coupling strength of the modes. Understanding of the mechanism may help to avoid vulnerable cases, either by design or by preparatory vibration testing. © 2013 Elsevier Ltd.
Resumo:
Near-field measurements were performed at X-band frequencies for graphene on copper microstrip transmission lines. An improvement in radiation of 0.88 dB at 10.2 GHz is exhibited from the monolayer graphene antenna which has dc sheet resistivity of 985 Ω/sq. Emission characteristics were validated via ab initio simulations and compared to empirical findings of geometrically comparable copper patches. This study contributes to the current knowledge of the electronic properties of graphene. © 2013 AIP Publishing LLC.
Resumo:
A technique using spectrum-shaping codes to create nulls in the baseband spectrum of an Ethernet signal, so that several RF signals can be inserted in-band, is demonstrated by simultaneous transmission of 10GbE and WCDMA signals. © 2013 OSA.
Resumo:
Simulations have investigated single laser 100G Ethernet links enabled by CAP-16 using QAM receivers that not only lower significantly system timing jitter sensitivity but also outperform PAM and standard CAP in terms of power margin. © 2013 OSA.
Resumo:
A Spatial Light Modulator is used to optically demultiplex modal channels on the basis of degenerate propagation constants using a shared phase mask for all channels. This allows groups of modes to be routed to common output fibres eliminating the need for MIMO equalization to transmit 2x56Gb/s QPSK over 2km of OM2 grade 50μm core MMF. © 2012 OSA.