275 resultados para integrated pathway
Resumo:
Wavelength conversion in the 1550 nm regime was achieved in an integrated semiconductor optical amplifier (SOA)/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. A 12 dB output extinction ratio was obtained for an average coupled input power of 75 μW with the laser section driven at 65 mA and the amplifier section at 180 mA. The response time achieved was as low as 13 ps with the laser biased at 175 mA even with low extinction ratios. The laser exhibits a similar recovery time allowing potentially very high bit-rate operation.
Resumo:
Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.
Resumo:
Wavelength conversion in the 1.55-μm regime was achieved for the first time in an integrated SOA/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. In terms of speed, response times as low as 13ps were observed, though at the expense of reduced extinction ratio. Generally, these results indicate that operation in the 10s of GB/s should be possible.
Resumo:
A technique is demonstrated that allows for the wavelength conversion of data with both simultaneous monitoring and replacing of a wavelength identifying pilot tone. The technique should be upgradable to data rates of 10Gb/s and higher.
Resumo:
A study of the relative performance of an integrated semiconductor optical amplifier (SOA)/distributed feedback laser wavelength converter that can operate with negative penalties at 10 Gb/s rates is conducted. It is found that reduction of more than 25 times in required input powers are achieved when compared with laser or SOA converters.
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.