173 resultados para automobile fuel economy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios, which is desirable to maximize the TRU burning rate. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage TRU burning cycle, where the first stage is Th-Pu MOX in a conventional PWR feeding a second stage continuous burn in RMPWR or RBWR, is technically reasonable, although it is more suitable for the RBWR implementation. In this case, the fuel cycle performance is relatively insensitive to the discharge burn-up of the first stage. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel treatment is considered a suitable way to mitigate the hazard related to potential wildfires on a landscape. However, designing an optimal spatial layout of treatment units represents a difficult optimization problem. In fact, budget constraints, the probabilistic nature of fire spread and interactions among the different area units composing the whole treatment, give rise to challenging search spaces on typical landscapes. In this paper we formulate such optimization problem with the objective of minimizing the extension of land characterized by high fire hazard. Then, we propose a computational approach that leads to a spatially-optimized treatment layout exploiting Tabu Search and General-Purpose computing on Graphics Processing Units (GPGPU). Using an application example, we also show that the proposed methodology can provide high-quality design solutions in low computing time. © 2013 The Authors. Published by Elsevier B.V.