249 resultados para antenna coupled resonator matching sections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a time-stepping shaker modeling scheme. The new method improves the accuracy of analysis of armature-position-dependent inductances and force factors, analysis of axial variation of current density in copper plates (short-circuited turns), and analysis of cooling holes in the magnetic circuit. Linear movement modeling allows armature position to be precisely included in the shaker analysis. A more accurate calculation of eddy currents in the coupled circuit is in particular crucial for the shaker analysis in a mid-or high-frequency operation range. Large currents in a shaker, including eddy currents, incur large Joule losses, which in turn require the use of a cooling system to keep temperature at bay. Sizable cooling holes have influence on the saturation state of iron poles, and hence have to be properly taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic analysis of a deepwater floating platform and the associated mooring/riser system should ideally be fully coupled to ensure a reliable response prediction. It is generally held that a time domain analysis is the only means of capturing the various coupling and nonlinear effects accurately. However, in recent work it has been found that for an ultra-deepwater floating system (2000m water depth), the highly efficient frequency domain approach can provide highly accurate response predictions. One reason for this is the accuracy of the drag linearization procedure over both first and second order motions, another reason is the minimal geometric nonlinearity displayed by the mooring lines in deepwater. In this paper, the aim is to develop an efficient analysis method for intermediate water depths, where both mooring/vessel coupling and geometric nonlinearity are of importance. It is found that the standard frequency domain approach is not so accurate for this case and two alternative methods are investigated. In the first, an enhanced frequency domain approach is adopted, in which line nonlinearities are linearized in a systematic way. In the second, a hybrid approach is adopted in which the low frequency motion is solved in the time domain while the high frequency motion is solved in the frequency domain; the two analyses are coupled by the fact that (i) the low frequency motion affects the mooring line geometry for the high frequency motion, and (ii) the high frequency motion affects the drag forces which damp the low frequency motion. The accuracy and efficiency of each of the methods are systematically compared. Copyright © 2007 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe a video tracking application using the dual-tree polar matching algorithm. The models are specified in a probabilistic setting, and a particle ilter is used to perform the sequential inference. Computer simulations demonstrate the ability of the algorithm to track a simulated video moving target in an urban environment with complete and partial occlusions. © The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a simple method to include superstructure stiffness in foundation analyses. The method involves extracting a small "condensed structural matrix" from finite element models of the superstructure, which can then be incorporated into pile group or piled raft analyses using common approaches such as elastic continuum or load transfer methods. The matrix condensation method directly couples structural and geotechnical analyses, and eliminates the need for iterative analyses between structural and geotechnical engineers. Effectiveness of the approach is illustrated through analyses of several buildings designed with a typical floor plan but with varying heights. The parametric study illustrates that superstructure stiffness can have a significant influence on foundation settlement estimates, and the stiffening effects are dominated by the lower stories of the superstructure. The proposed method aims to bridge the gap between structural and geotechnical analyses. Also, being a computationally simple and accurate approach, it is applicable to parametric or optimization studies that would otherwise involve large amounts of analyses. © 2010 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent years we have developed and published research aimed at producing a meshing, geometry editing and simulation system capable of handling large scale, real world applications and implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the extension of this meshing system to include conjugate meshes for multi-physics simulations. Two contrasting applications are presented: export of a body-conformal mesh to drive a commercial, third-party simulation system; and direct use of the cut-Cartesian octree mesh with a single, integrated, close-coupled multi-physics simulation system. Copyright © 2010 by W.N.Dawes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronization phenomena in a fluid dynamical analogue of atmospheric circulation is studied experimentally by investigating the dynamics of a pair of thermally coupled, rotating baroclinic annulus systems. The coupling between the systems is in the well-known master-slave configuration in both periodic and chaotic regimes. Synchronization tools such as phase dynamics analysis are used to study the dynamics of the coupled system and demonstrate phase synchronization and imperfect phase synchronization, depending upon the coupling strength and parameter mismatch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FBAR devices with carbon nanotube (CNT) electrodes have been developed withthe aim of taking advantage of the low density and high acoustic impedance ofthe CNTs compared to other known materials. The influence of the CNTs on thefrequency response of the FBAR devices was studied by comparing two identicalsets of devices, one set comprised FBARs fabricated with chromium/gold bilayerelectrodes, and the second set comprised FBARs fabricated with CNT electrodes.It was found that the CNTs had a significant effect on attenuating travellingwaves at the surface of the FBARs membranes due to their high elastic stiffness.Finite element analysis of the devices fabricated was carried out using COMSOLMultiphysics, and the numerical results confirmed the experimental resultsobtained. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, phase noise analysis of a mechanical autonomous impact oscillator with a MEMS resonator is performed. Since the circuit considered belongs to the class of hybrid systems, methods based on the variational model for the evaluation of either phase noise or steady state solutions cannot be directly applied. As a matter of fact, the monodromy matrix is not defined at impact events in these systems. By introducing saltation matrices, this limit is overcome and the aforementioned methods are extended. In particular, the unified theory developed by Demir is used to analyze the phase noise after evaluating the asymptotically stable periodic solution of the system by resorting to the shooting method. Numerical results are presented to show how noise sources affect the phase noise performances. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate synchronization of two electrically coupled MEMS oscillators incorporating nearly identical silicon tuning fork microresonators. It is seen that as the output of the oscillators are coupled, they exhibit a synchronized response wherein the output amplitudes and signal-to-noise ratios of the two oscillators are improved relative to the case where the two oscillators are uncoupled. The observed output frequency of each oscillator before coupling is 219402.4 Hz and 219403.6 Hz respectively. In contrast, when the oscillators are driven simultaneously, they lock at a common output frequency of 219401.3 Hz and their outputs are found to be out-of-phase with respect to each other. A 6 dBm gain in output power and a reduction in the phase fluctuations of the output signal are observed for the coupled oscillators compared to the case when the oscillators are uncoupled. © 2011 IEEE.