202 resultados para Strain gages.
Resumo:
A packaging technique suited to applying MEMS strain sensors realized on a silicon chip to a steel flat surface is described. The method is based on adhesive bonding of the silicon chip rear surface on steel using two types of glue normally used for standard piezoresistive strain sensors (Mbond200/ 600), using direct wire bonding of the chip to a Printed Circuit Board, also fixed on steel. In order to protect the sensor from the external environment, and to improve the MEMS performance, the silicon chip is encapsulated with a metal cap hermetically sealed-off under vacuum condition with a vacuum adhesive in which the bonding wires are also protected from possible damage. In order to evaluate the mechanical coupling of the silicon chip with the bar and thestress transfer extent to the silicon surface, commercial strain sensors have been applied on the chip glued on a steel bar in alaboratory setup able to generate strain by inflection, yielding a stress transfer around 70% from steel to silicon. © 2008 IEEE.
Resumo:
A novel type of linear extensometer with exceptionally high resolution of 4 nm based on MEMS resonant strain sensors bonded on steel and operating in a vacuum package is presented. The tool is implemented by means of a steel thin bar that can be pre-stressed in tension within two fixing anchors. The extension of the bar is detected by using two vacuum-packaged resonant MEMS double- ended tuning fork (DETF) sensors bonded on the bar with epoxy glue, one of which is utilized for temperature compensation. Both sensors are driven by a closed loop self-oscillating transresistance amplifier feedback scheme implemented on a PCB (Printed Circuit Board). On the same board, a microcontroller-based frequency measurement circuit is also implemented, which is able to count the square wave fronts of the MEMS oscillator output with a resolution of 20 nsec. The system provides a frequency noise of 0.2 Hz corresponding to an extension resolution of 4 nm for the extensometer. Nearly perfect temperature compensation of the frequency output is achieved in the temperature range 20-35 C using the reference sensor. © 2011 IEEE.
Resumo:
The influence of particle shape on the stress-strain response of fine silica sand is investigated experimentally. Two sands from the same source and with the same particle size distribution were examined using Fourier descriptor analysis for particle shape. Their grains were, on average, found to have similar angularity but different elongation. During triaxial stress path testing, the stress-strain behavior of the sands for both loading and creep stages were found to be influenced by particle elongation. In particular, the behavior of the sand with less elongated grains was more like that of rounded glass beads during creep. The results highlight the role of particle shape in stress transmission in granular packings and suggest that shape should be taken more rigorously into consideration in characterizing geomaterials. © 2005 Taylor & Francis Group.