199 resultados para Soil mites
Resumo:
Stabilisation, using a wide range of binders including wastes, is most effective for heavy metal soil contamination. Bioremediation techniques, including bioaugmentation to enhance soil microbial population, are most effective for organic contaminants in the soil. For mixed contaminant scenarios a combination of these two techniques is currently being investigated. An essential issue in this combined remediation system is the effect of microbial processes on the leachability of the heavy metals. This paper considers the use of zeolite and compost as binder additives combined with bioaugmentation treatments and their effect on copper leachability in a model contaminated soil. Different leaching test conditions are considered including both NRA and TCLP batch leaching tests as well as flow-through column tests. Two flow rates are applied in the flow-through tests and the two leaching tests are compared. Recommendations are given as to the effectiveness of this combined remediation technique in the immobilisation of copper. © 2005 Taylor & Francis Group.
Resumo:
Noise and vibration from underground railways is a major source of disturbance to inhabitants near subways. To help designers meet noise and vibration limits, numerical models are used to understand vibration propagation from these underground railways. However, the models commonly assume the ground is homogeneous and neglect to include local variability in the soil properties. Such simplifying assumptions add a level of uncertainty to the predictions which is not well understood. The goal of the current paper is to quantify the effect of soil inhomogeneity on surface vibration. The thin-layer method (TLM) is suggested as an efficient and accurate means of simulating vibration from underground railways in arbitrarily layered half-spaces. Stochastic variability of the soils elastic modulus is introduced using a KL expansion; the modulus is assumed to have a log-normal distribution and a modified exponential covariance kernel. The effect of horizontal soil variability is investigated by comparing the stochastic results for soils varied only in the vertical direction to soils with 2D variability. Results suggest that local soil inhomogeneity can significantly affect surface velocity predictions; 90 percent confidence intervals showing 8 dB averages and peak values up to 12 dB are computed. This is a significant source of uncertainty and should be considered when using predictions from models assuming homogeneous soil properties. Furthermore, the effect of horizontal variability of the elastic modulus on the confidence interval appears to be negligible. This suggests that only vertical variation needs to be taken into account when modelling ground vibration from underground railways. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2×2 pile groups with bending and geometric properties similar to real 0.5m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group, London.
Resumo:
The effects of initial soil fabric and mode of shearing on quasi-steady state line in void ratiostress space are studied by employing the Distinct Element Method numerical analysis. The results show that the initial soil fabric and the mode of shearing have a profound effect on the location of the quasi-steady state line. The evolution of the soil fabric during the course of undrained shearing shows that the specimens with different initial soil fabrics reach quasi-steady state at various soil fabric conditions. At quasi-steady state, the soil fabric has a significant adjustment to change its behavior from contractive to dilative. As the stress state approaches the steady state, the soil fabrics of different initial conditions become similar. The numerical analysis results are compared qualitatively with the published experimental data and the effects of specimen reconstitution methods and mode of shearing found in the experimental studies canbe systematically explained by the numerical analysis. © 2009 Taylor & Francis Group.
Resumo:
One of the major concerns for engineers in seismically active regions is the prevention of damage caused by earthquake-induced soil liquefaction. Vertical drains can aid dissipation of excess pore pressures both during and after earthquakes. Drain systems are designed using standard design charts based around the concept of a unit cell, assuming each drain is surrounded by more drains. It is unclear how predictable drain performance is outside that unit cell concept, for example, drains at the edge of a group. Centrifuge testing is a logical method of performing controlled experiments to establish the efficacy of vertical drains. Centrifuge testing is used to identify the effect of drains dealing with very different catchment areas. The importance of this is further highlighted by the results of a test where the same drains have been modified so that each should behave as a unit cell. It is shown that drains with large catchment areas perform more poorly than unit cells, and also have a knock-on detrimental effect on other drains. Copyright © 2011, IGI Global.
Resumo:
Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10-8 m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.
Resumo:
The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.
Resumo:
In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Such uplift response of the buoyant structure is influenced by the soil it is buried in. In the case of a liquefiable soil deposit, the soil can lose its shear strength significantly in the event of an earthquake. If the soil liquefies fully, the buoyant structure can float towards the soil surface. However, a partly liquefied soil deposit retains some of its initial shear strength and resists the uplift. This paper discusses the different soil conditions and their influence on the uplift response of buoyant structures. © 2012 World Scientific Publishing Company.
Resumo:
This paper presents a novel, three-dimensional, single-pile model, formulated in the wavenumber domain and adapted to account for boundary conditions using the superposition of loading cases. The pile is modelled as a column in axial vibration, and a Euler-Bernoulli beam in lateral vibration. The surrounding soil is treated as a viscoelastic continuum. The response of the pile is presented in terms of the stiffness and damping coefficients, and also the magnitude and phase of the pile-head frequency-response function. Comparison with existing models shows that excellent agreement is observed between this model, a boundary-element formulation, and an elastic-continuum-type formulation. This three-dimensional model has an accuracy equivalent to a 3D boundary-element model, and a runtime similar to a 2D plane-strain analytical model. Analysis of the response of the single pile illustrates a difference in axial and lateral vibration behaviour; the displacement along the pile is relatively invariant under axial loads, but in lateral vibration the pile exhibits localised deformations. This implies that a plane-strain assumption is valid for axial loadings and only at higher frequencies for lateral loadings. © 2013 Elsevier Ltd.
Resumo:
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.
Resumo:
This paper presents a Bayesian probabilistic framework to assess soil properties and model uncertainty to better predict excavation-induced deformations using field deformation data. The potential correlations between deformations at different depths are accounted for in the likelihood function needed in the Bayesian approach. The proposed approach also accounts for inclinometer measurement errors. The posterior statistics of the unknown soil properties and the model parameters are computed using the Delayed Rejection (DR) method and the Adaptive Metropolis (AM) method. As an application, the proposed framework is used to assess the unknown soil properties of multiple soil layers using deformation data at different locations and for incremental excavation stages. The developed approach can be used for the design of optimal revisions for supported excavation systems. © 2010 ASCE.