213 resultados para Polarization switching
Resumo:
A novel InGaAs/InGaAsP/InP integrated multiwavelength grating cavity laser is presented, which has been used to demonstrate space switching and simultaneous all-optical wavelength conversion at bit rates of 2.488 Gbit/s. This has been achieved using a single monolithically integrated device without the need for post-filtering to separate the converted signal from the input.
All-optical switching in a vertical coupler space switch employing photocarrier-induced nonlinearity
Resumo:
A novel compact integrated nonlinear optical switch is demonstrated. Using a high-power picosecond pulse of 5-ps pulsewidth and 250-MHz repetition rate, all-optical switching with a contrast ratio of 23 dB has been achieved using an in-fiber input power < 14 dBm (100 pJ/pulse). The switch speed depends on the carrier sweep-out time, which can be reduced to the 10 ps range by either applying a reverse bias or by introduction of carrier recombination centers in the active layer.
Resumo:
The first experimental demonstration of unique polarizatioon characteristics are reported. It is believed that the strong polarization effects reported result from the chirality imposed by the patterns of gammadions enhanced by plasmon effects due to the nanostructuring of the metal film in which they are cut. It is clear that such structures has the potential to yield many new and intriguing applications in optoelectronics and other areas.
Resumo:
In order to develop materials that exhibit enhanced flexoelectric switching in the chiral nematic phase we have identified mesogenic units that display inherently strong flexoelectric coupling capabilities. Here we examine the oxycyanobiphenyl (OCB) moiety: homologues from the nOCB series exhibit significant electro-optic switching effects when doped with a highly chiral additive. Here we have examined lower dielectric anisotropy materials, since they allow the flexoelectric response to be extended to high field amplitudes. We show that dielectric coupling strength can be low in symmetric bimesogenic molecules. The flexoelectric response of such a molecular structure is tested by doping a homologue from the series CBOnOCB with a chiral additive: very significantly we find that the optic axis is rotated through 2φ=45° in <50 μs on reversing the polarity of the field (amplitude E=±6 V μm-1). Subsequently we have synthesized room temperature chiral nematic materials that exhibit 2φ≥90° at E≈10 V μm-1. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
We propose a self-forwarding packet-switched optical network with bit-parallel multi-wavelength labels. We experimentally demonstrate transmission of variable-length optical packets over 80 km of fiber and switching over a 1×4 multistage switch with two stages. © 2007 Optical Society of America.
Resumo:
A hybrid semiconductor power device has been designed which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between an IGBT and a thyristor mode of operation. This paper discusses aspects of the switching behaviour of this and of similar devices. Simulation results of an example structure are presented and conceivable developments in the switching characteristics of hybrid devices are discussed.
Resumo:
Polarization-insensitivity is achieved in a reflective spatial light modulator by laying a quarter-wave plate (QWP) at the incident wavelength directly over the mirror pixels of a silicon backplane, and forming a nematle Fréedrickcz cell over the QWP to modulate the reflected phase. To achieve the highest drive voltage from the available silicon process, a switched voltage common front electrode design is described, with variable amplitude square wave drive to the pixels to maintain constant root-mean-square drive and minimize phase fluctuations during the dc balance refresh cycle. The silicon has been fabricated and liquid-crystal-on-silicon cells both with and without the QWP assembled; applications include optically transparent switches for optical networks, beam steering for add-drop multiplexers for wavelength-division- multiplexing telecommunications, television multicast, and holographic projection.
Resumo:
A hybrid semiconductor power device has been designed which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between an IGBT and a thyristor mode of operation. This paper discusses aspects of the switching behaviour of this and of similar devices. Simulation results of an example structure are presented and conceivable developments in the switching characteristics of hybrid devices are discussed.
Resumo:
Ultrafast self-switching of spectral-amplitude-encoded 40 Gb/s DPSK signals is demonstrated for the first time. Switching between 21 ports with 15nm maximum bin separation is achieved using a single correlator based on HNLF and an AWG. © 2009 IEEE.
Resumo:
The influence of mechanical constraint imposed by device geometry upon the switching response of a ferroelectric thin film memory capacitor is investigated. The memory capacitor was represented by two-dimensional ferroelectric islands of different aspect ratio, mechanically constrained by surrounding materials. Its ferroelectric non-linear behaviour was modeled by a crystal plasticity constitutive law and calculated using the finite element method. The switching response of the device, in terms of remnant charge storage, was determined as a function of geometry and constraint. The switching response under applied in-plane tensile stress and hydrostatic pressure was also studied experimentally. Our results showed that (1) the capacitor's aspect ratio could significantly affect the clamping behaviour and thus the remnant polarization, (2) it was possible to maximise the switching charge through the optimisation of the device geometry, and (3) it is possible to find a critical switching stress at zero electric field and a critical coercive field at zero residual stress. © 2009 Materials Research Society.
Resumo:
We have used novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic/display modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence based displays with 100 μs switching times at low fields, i.e.2-5 V/μm, wide viewing angle and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color and 4) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers.
Resumo:
Capacitance-voltage (C-V) characteristics of lead zirconate titanate (PZT) thin films with a thickness of 130 nm were measured between 300 and 533 K. The transition between ferroelectric and paraelectric phases was revealed to be of second order in our case, with a Curie temperature at around 450 K. A linear relationship was found between the measured capacitance and the inverse square root of the applied voltage. It was shown that such a relationship could be fitted well by a universal expression of C/A = k(V+V(0))(-1/2) and that this expression could be derived by expanding the Landau-Devonshire free energy at an effective equilibrium position of the Ti/Zr ion in a PZT unit cell. By using the derived equations in this work, the free energy parameters for an individual material can be obtained solely from the corresponding C-V data, and the temperature dependences of both remnant polarization and coercive voltage are shown to be in quantitative agreement with the experimental data.
Resumo:
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.
Resumo:
Modeling and numerical analysis of diamond m-i-p+ diode have been performed for static and transient analysis using TCAD Sentaurus platform. The simulation results are compared with experimental measurements. Prediction of transient turn-off characteristics of diamond m-i-p+ diode at high temperature is performed for the first time. It was found that unlike conventional Si diode, peak reverse current in diamond m-i-p+ diode reduces with increasing temperature while on-state voltage drop increases. © 2011 IEEE.