191 resultados para Photon propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present temperature-dependent modeling of high-temperature superconductors (HTS) to understand HTS electromagnetic phenomena where temperature fluctuation plays a nontrivial role. Thermal physics is introduced into the well-developed H-formulation model, and the effect of temperature-dependent parameters is considered. Based on the model, we perform extensive studies on two important HTS applications: quench propagation and pulse magnetization. A micrometer-scale quench model of HTS coil is developed, which can be used to estimate minimum quench energy and normal zone propagation velocity inside the coil. In addition, we study the influence of inhomogeneity of HTS bulk during pulse magnetization. We demonstrate how the inhomogeneous distribution of critical current inside the bulk results in varying degrees of heat dissipation and uniformity of final trapped field. The temperature- dependent model is proven to be a powerful tool to study the thermally coupled electromagnetic phenomena of HTS. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major challenges in high-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of nonuniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 38 dB in sound power level due to the nonuniform inflow, far-field noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be two blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in nonuniform flow showed that the effects of nonuniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that nonlinear, coupled aerodynamic and aero-acoustic computations, such as those presented in this paper, are necessary to assess the propagation through nonuniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. © 2013 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major challenges in hig4h-speed fan stages used in compact, embedded propulsion systems is inlet distortion noise. A body-force-based approach for the prediction of multiple-pure-tone (MPT) noise was previously introduced and validated. In this paper, it is employed with the objective of quantifying the effects of non-uniform flow on the generation and propagation of MPT noise. First-of-their-kind back-to-back coupled aero-acoustic computations were carried out using the new approach for conventional and serpentine inlets. Both inlets delivered flow to the same NASA/GE R4 fan rotor at equal corrected mass flow rates. Although the source strength at the fan is increased by 45 dB in sound power level due to the non-uniform inflow, farfield noise for the serpentine inlet duct is increased on average by only 3.1 dBA overall sound pressure level in the forward arc. This is due to the redistribution of acoustic energy to frequencies below 11 times the shaft frequency and the apparent cut-off of tones at higher frequencies including blade-passing tones. The circumferential extent of the inlet swirl distortion at the fan was found to be 2 blade pitches, or 1/11th of the circumference, suggesting a relationship between the circumferential extent of the inlet distortion and the apparent cut-off frequency perceived in the far field. A first-principles-based model of the generation of shock waves from a transonic rotor in non-uniform flow showed that the effects of non-uniform flow on acoustic wave propagation, which cannot be captured by the simplified model, are more dominant than those of inlet flow distortion on source noise. It demonstrated that non-linear, coupled aerodynamic and aeroacoustic computations, such as those presented in this paper, are necessary to assess the propagation through non-uniform mean flow. A parametric study of serpentine inlet designs is underway to quantify these propagation effects. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.PACS: 81.07.Ta; 78.67.Hc; 68.65.-k.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concepts of function are central to design but statements about a device's functions can be interpreted in different ways. This raises problems for researchers trying to clarify the foundations of design theory and for those developing design support-tools that can represent and reason about function. By showing how functions relate systems to their sub-systems and super-systems, this article illustrates some limitations of existing function terminology and some problems with existing function statements. To address these issues, a system-relative function terminology is introduced. This is used to demonstrate that systems function not only with respect to their most local super-system, but also with respect to their more global super-systems. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for characterizing the propagation of the magnetic flux in an artificially drilled bulk high-temperature superconductor (HTS) during a pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical sample, the magnetic flux density is measured simultaneously in 16 holes by means of microcoils that are placed across the median plane, i.e. at an equal distance from the top and bottom surfaces, and close to the surface of the sample. We discuss the time evolution of the magnetic flux density in the holes during a pulse and measure the time taken by the external magnetic flux to reach each hole. Our data show that the flux front moves faster in the median plane than on the surface when penetrating the sample edge; it then proceeds faster along the surface than in the bulk as it penetrates the sample further. Once the pulse is over, the trapped flux density inside the central hole is found to be about twice as large in the median plane than on the surface. This ratio is confirmed by modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of soil modulus as a function of strain. In field experiments, an excitation is applied on the ground surface using large-scale shakers, and the response of the soil deposit is recorded through receivers embedded in the soil. The focus of this paper is on the simulation and observation of signals that would be recorded at the receiver locations under idealized conditions to provide guidelines on the interpretation of the field measurements. Discrete models are used to reproduce one-dimensional and three-dimensional geometries. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave; therefore related to the constrained modulus of the material. If one considers, on the other hand, phase differences between the motions at two receivers, the picture is far more complicated and one would obtain propagation velocities, function of frequency and measuring location, which do not correspond to either the constrained modulus or Young's modulus. It is necessary then to conduct more rigorous and complicated analyses in order to interpret the data. This paper discusses and illustrates these points. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of shear modulus as a function of strain. In this paper the meaning of the material stiffness obtained from impact and harmonic excitation tests on a surface slab is discussed. A one-dimensional discrete model with the nonlinear material stiffness is used for this purpose. When a static load is applied followed by an impact excitation, if the amplitude of the impact is very small, the measured wave velocity using the cross-correlation indicates the wave velocity calculated from the tangent modulus corresponding to the state of stress caused by the applied static load. The duration of the impact affects the magnitude of the displacement and the particle velocity but has very little effect on the estimation of the wave velocity for the magnitudes considered herein. When a harmonic excitation is applied, the cross-correlation of the time histories at different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loop under steady-state condition. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently developed equipment allows measurement of the shear modulus of soil in situ as a function of level of strain. In these field experiments, the excitation is applied on the ground surface using large scale shakers, and the response of the soil deposit is recorded through embedded receivers. The focus of this paper is on the simulation of signals which would be recorded at the receiver locations in idealized conditions to provide guidelines on the interpretation of field measurements. Discrete and finite element methods are employed to model one dimensional and three dimensional geometries, respectively, under various lateral boundary conditions. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave, related to the constrained modulus of the material, regardless of lateral boundary conditions. If one considers, on the other hand, phase differences between the motions at two receivers the picture is far more complicated and one would obtain propagation velocities, function of frequency and depth, which do not correspond to either the constrained modulus or Young's modulus. It is thus necessary to apply some care when interpreting the data from field tests based on vertical steady state vibrations. The use of inverse analysis can be considered as a way of extracting the shear modulus of soil from the field test measurements. © 2008 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the author's on-going research is to explore the feasibility of determining reliable in situ curves of shear modulus as a function of strain using the dynamic test. The purpose of this paper is limited to investigating what material stiffness is measured from a dynamic test, focusing on the harmonic excitation test. A one-dimensional discrete model with nonlinear material properties is used for this purpose. When a sinusoidal load is applied, the cross-correlation of signals from different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loops under steady-state conditions. The variables that contributed to changing the average slope of the stress-strain loop also influence the estimate of the wave velocity from cross-correlation. Copyright ASCE 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the propagation of acoustic waves along a cylindrical duct carrying radially sheared axial mean flow, in which the duct radius is allowed to vary slowly along the axis. In previous work [A.J. Cooper & N. Peake, Journal of Fluid Mechanics 445 (2001) 207-234.] radially sheared axial mean flow with nonzero swirl in a slowly varying duct was considered, but in this paper we set the swirl to zero, thereby allowing simplification of the calculations of both the mean and unsteady flows. In this approach the acoustic wavenumber and corresponding eigenfunction are determined locally, while the wave amplitude is found by solving an evolution equation along the duct. Sample results are presented, including a case in which, perhaps surprisingly, the number of cut-on modes increases as the duct radius decreases. © 2013 Elsevier Ltd. All rights reserved.