222 resultados para MELT POINT
Resumo:
The linear dynamics, operation, and engineering aspects of P.S. FROG, a point absorber wave energy conversion buoy, are summarized. The device consists of a floating flap or paddle facing the waves and reacting against them through an interior moving mass in an enlarged section at the bottom of the buoy.
Resumo:
Crystal growth of melt-textured Nd-123 pseudo-crystals was investigated via an isothermal solidification with top-seeding technique under a 1%O2 in N2 atmosphere. Non-steady state solidification was observed at low undercooling, in contrast to an almost linear growth at higher undercooling. Similar to processing in air, the substitution of Nd/Ba was found to decrease from the seed position to the edge of the crystal. In addition, the volume fraction of Nd-422 particles decreased in the solid as solidification proceeded. As a result of these microstructural inhomogeneities, the critical temperature and the critical current density varied within the crystal even for samples processed isothermally, despite the narrow solid solution range of the Nd-123 phase under a reduced pO2 atmosphere.
Resumo:
Using a magneto-optical (MO) technique, magnetic field distributions have been measured in a melt-textured YBa 2Cu 3O 7-x bulk superconductor, joined to form an artificial grain boundary (GB), in an external magnetic field perpendicular to the sample surface. The magnetic field at a weak section of the GB shows different values between the field increasing up to 150mT and decreasing down to 0T after zero-field-cooling. Namely, the magnetic field in increasing field is higher than that in decreasing field, even in the same external field. This result supports a model in which such differences in magnetic field at the weak-link GB give rise to the hysteresis behavior in the field dependence of transport critical current density in polycrystalline samples. The field distributions across a well-joined region of the GB behave similarly to the adjoining bulk material and this result indicates the possibility of creating useful artifacts provided that the strongly coupled sections can be reproduced on a larger scale.
Resumo:
This analysis is concerned with the calculation of the elastic wave transmission coefficients and coupling loss factors between an arbitrary number of structural components that are coupled at a point. A general approach to the problem is presented and it is demonstrated that the resulting coupling loss factors satisfy reciprocity. A key aspect of the method is the consideration of cylindrical waves in two-dimensional components, and this builds upon recent results regarding the energetics of diffuse wavefields when expressed in cylindrical coordinates. Specific details of the method are given for beam and thin plate components, and a number of examples are presented. © 2002 Acoustical Society of America.
Resumo:
We have experimentally investigated the crossed magnetic field effects on bulk melt-processed YBCO single domains. The samples were first permanently magnetized along their c-axis and then subjected to several cycles of a transverse magnetic field parallel to the ab planes. The magnetic properties along the c and ab directions were simultaneously measured using a couple of orthogonal pick-up coils as well as a Hall probe placed against the sample surface. The effects of both sweep amplitude and polarity were investigated. Field sweeps of alternate polarities are shown to affect the decay of the c-axis magnetization much more strongly than field sweeps of unique polarity do. However, the c-axis magnetization does not show any saturation even after a large number of field sweeps. Next, a micro-Hall probe scanning system was used to measure the distribution of magnetic induction over the top surface of the single domain subjected to the same combination of magnetic fields. The results are shown to be consistent with those determined with the sensing coils and bring out the role played by geometric effects.
Resumo:
Large, single grain Nd-Ba-Cu-O (NdBCO) composite samples of NdBa2Cu3O7-δ (Nd-123) containing 15 and 20 mol. % non-superconducting Nd4Ba2Cu2O10 (Nd-422) phase inclusions have been fabricated successfully by a variety of techniques based on top-seeded melt growth under reduced oxygen partial pressure. Specifically, individual grains up to 2cm in diameter have been grown using (100) oriented MgO seeding, self (NdBCO) seeding at elevated temperature and self-seeding of Ag and Au doped precursor pellets. The latter exhibit a reduced peritectic decomposition temperature compared with the undoped compound. These techniques, which vary in degree of difficulty and hence reliability, yield grains with a range of microstructural homogeneity. This paper describes the general aspects of large NdBCO grain fabrication and presents the results of the different fabrication techniques.
Resumo:
The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of large grain Y-Ba-Cu-O (YBCO) bulk superconductors fabricated by top seeded melt growth (TSMG) has been investigated. Seeding bulk samples with small, square shaped seed crystals leads to point nucleation and growth of the superconducting YBa2Cu3O7-y (Y-123) phase that exhibits the usual square habitual growth symmetry. The use of triangular and circular shaped seed crystals, however, modifies significantly the growth habit geometry of the grain. The use of large area seeds both increases the rate of epitaxial nucleation of the Y-123 phase and produces relatively large crystals in the incongruent melt, which decreases significantly the processing times of large grain samples. The present study is relevant to decrease processing times of samples with both preferred or no growth sectors and for multiple seeding of large grain samples which contain clean grain boundaries. © 2005 Published by Elsevier Ltd.
Resumo:
Future applications of high temperature superconductors require bulk materials of a complex shape. The multi-seeded-melt-growth process (MSMG) represents a promising technique for obtaining qualitatively well oriented bulk materials with different kinds of shape. In the MSMG process, several seeds are placed on a precursor pellet, from which the growth of the bulk starts. A certain problem of the MSMG process is that grain boundaries become inevitable when the growth fronts of two neighboring seeds collide. These grain boundaries are responsible for a reduction of the critical currents and pose a problem for high current applications. By polishing the sample step by step, the influence of the grain boundaries was investigated by scanning Hall probe measurements and by the magnetoscan technique. Additionally, optical microscopy and electron microscopy were employed to investigate the details of the microstructure. © 2005 IEEE.
Resumo:
Although partially observable Markov decision processes (POMDPs) have shown great promise as a framework for dialog management in spoken dialog systems, important scalability issues remain. This paper tackles the problem of scaling slot-filling POMDP-based dialog managers to many slots with a novel technique called composite point-based value iteration (CSPBVI). CSPBVI creates a "local" POMDP policy for each slot; at runtime, each slot nominates an action and a heuristic chooses which action to take. Experiments in dialog simulation show that CSPBVI successfully scales POMDP-based dialog managers without compromising performance gains over baseline techniques and preserving robustness to errors in user model estimation. Copyright © 2006, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.
Resumo:
We propose an algorithm for semantic segmentation based on 3D point clouds derived from ego-motion. We motivate five simple cues designed to model specific patterns of motion and 3D world structure that vary with object category. We introduce features that project the 3D cues back to the 2D image plane while modeling spatial layout and context. A randomized decision forest combines many such features to achieve a coherent 2D segmentation and recognize the object categories present. Our main contribution is to show how semantic segmentation is possible based solely on motion-derived 3D world structure. Our method works well on sparse, noisy point clouds, and unlike existing approaches, does not need appearance-based descriptors. Experiments were performed on a challenging new video database containing sequences filmed from a moving car in daylight and at dusk. The results confirm that indeed, accurate segmentation and recognition are possible using only motion and 3D world structure. Further, we show that the motion-derived information complements an existing state-of-the-art appearance-based method, improving both qualitative and quantitative performance. © 2008 Springer Berlin Heidelberg.