241 resultados para Hydraulic measurements.
Resumo:
Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.
Resumo:
Instability triggering and transient growth of thermoacoustic oscillations were experimentally investigated in combination with linear/nonlinear flame transfer function (FTF) methodology in a model lean-premixed gas turbine combustor operated with CH 4 and air at atmospheric pressure. A fully premixed flame with 10kW thermal power and an equivalence ratio of 0.60 was chosen for detailed characterization of the nonlinear transient behaviors. Flame transfer functions were experimentally determined by simultaneous measurements of inlet velocity fluctuations and heat release rate oscillations using a constant temperature anemometer and OH */CH * chemiluminescence emissions, respectively. The phase-resolved variation of the local flame structure at a limit cycle was measured by planar laser-induced fluorescence of OH. Simultaneous measurements of inlet velocity, OH */CH * emission, and acoustic pressure were performed to investigate the temporal evolution of the system from a stable to a limit cycle operation. This measurement allows us to describe an unsteady instability triggering event in terms of several distinct stages: (i) initiation of a small perturbation, (ii) exponential amplification, (iii) saturation, (iv) nonlinear evolution of the perturbations towards a new unstable periodic state, (v) quasi-steady low-amplitude periodic oscillation, and (vi) fully-developed high-amplitude limit cycle oscillation. Phase-plane portraits of instantaneous inlet velocity and heat release rate clearly show the presence of two different attractors. Depending on its initial position in phase space at infinitesimally small amplitude, the system evolves towards either a high-amplitude oscillatory state or a low-amplitude oscillatory state. This transient phenomenon was analyzed using frequency- and amplitude-dependent damping mechanisms, and compared to subcritical and supercritical bifurcation theories. The results presented in this paper experimentally demonstrate the hypothesis proposed by Preetham et al. based on analytical and computational solutions of the nonlinear G-equation [J. Propul. Power 24 (2008) 1390-1402]. Good quantitative agreement was obtained between measurements and predictions in terms of the conditions for the onset of triggering and the amplitude of triggered combustion instabilities. © 2011 The Combustion Institute.
Resumo:
This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.
Resumo:
Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil. © 2011 American Institute of Physics.
Resumo:
Failure of retaining walls is observed after many recent seismic events. Design of these walls are based on the pseudo-static force designs based on the Mononobe-Okabe earth pressure coefficient equations. However, it is clear that there are limitations attached with this approach. This paper investigates the seismic behaviour of sheet pile retaining walls using dynamic centrifuge testing facilities. In addition to using bending moment strain gauges on the wall, new generation earth pressure cells have also been used to investigate the generation of active and passive earth pressures. The results indicate that Mononobe-Okabe equations give relatively good estimates of active earth pressures but may be over-predicting passive earth pressures at certain peak ground acceleration levels. Based on this series of centrifuge tests it is concluded that earth pressure cells are successful in providing good qualitative data, but need to be supplemented by good calibration methods. © 2010 Taylor & Francis Group, London.