183 resultados para FEEDFORWARD NETWORK
Resumo:
In adapting to changing forces in the mechanical environment, humans change the force being applied by the limb by reciprocal changes in the activation of antagonistic muscles. However, they also cocontract these muscles when interaction with the environment is mechanically unstable to increase the mechanical impedance of the limb. We have postulated that appropriate patterns of muscle activation could be learned using a simple scheme in which the naturally occurring stretch reflex is used as a template to adjust feedforward commands to muscles. Feedforward commands are modified iteratively by shifting a scaled version of the reflex response forward in time and adding it to the previous feedforward command. We show that such an algorithm can account for the principal features of changes in muscle activation observed when human subjects adapt to instabilities in the mechanical environment. © 2006.
Resumo:
Supply chain tracking information is one of the main levers for achieving operational efficiency. RFID technology and the EPC Network can deliver serial-level product information that was never before available. However, these technologies still fail to meet the managers' visibility requirements in full, since they provide information about product location at specific time instances only. This paper proposes a model that uses the data provided by the EPC Network to deliver enhanced tracking information to the final user. Following a Bayesian approach, the model produces realistic ongoing estimates about the current and future location of products across a supply network, taking into account the characteristics of the product behavior and the configuration of the data collection points. These estimates can then be used to optimize operational decisions that depend on product availability at different locations. The enhancement of tracking information quality is highlighted through an example. © 2009 IFAC.
Resumo:
Iteration is unavoidable in the design process and should be incorporated when planning and managing projects in order to minimize surprises and reduce schedule distortions. However, planning and managing iteration is challenging because the relationships between its causes and effects are complex. Most approaches which use mathematical models to analyze the impact of iteration on the design process focus on a relatively small number of its causes and effects. Therefore, insights derived from these analytical models may not be robust under a broader consideration of potential influencing factors. In this article, we synthesize an explanatory framework which describes the network of causes and effects of iteration identified from the literature, and introduce an analytic approach which combines a task network modeling approach with System Dynamics simulation. Our approach models the network of causes and effects of iteration alongside the process architecture which is required to analyze the impact of iteration on design process performance. We show how this allows managers to assess the impact of changes to process architecture and to management levers which influence iterative behavior, accounting for the fact that these changes can occur simultaneously and can accumulate in non-linear ways. We also discuss how the insights resulting from this analysis can be visualized for easier consumption by project participants not familiar with simulation methods. Copyright © 2010 by ASME.
Resumo:
Purpose - In recent years there has been increasing interest in Product Service Systems (PSSs) as a business model for selling integrated product and service offerings. To date, there has been extensive research into the benefits of PSS to manufacturers and their customers, but there has been limited research into the effect of PSS on the upstream supply chain. This paper seeks to address this gap in the research. Design/methodology/approach - The research uses case-based research which is appropriate for exploratory research of this type. In-depth interviews were conducted with key personnel in a focal firm and two members of its supply chain, and the results were analysed to identify emergent themes.b Findings - The research has identified differences in supplier behaviour dependent on their role in PSS delivery and their relationship with the PSS provider. In particular, it suggests that for a successful partnership it is important to align the objectives between PSS provider and suppliers. Originality/value - This research provides a detailed investigation into a PSS supply chain and highlights the complexity of roles and relationships among the organizations within it. It will be of value to other PSS researchers and organizations transitioning to the delivery of PSS. © Emerald Group Publishing Limited.
Resumo:
This paper extends a state projection method for structure preserving model reduction to situations where only a weaker notion of system structure is available. This weaker notion of structure, identifying the causal relationship between manifest variables of the system, is especially relevant is settings such as systems biology, where a clear partition of state variables into distinct subsystems may be unknown, or not even exist. The resulting technique, like similar approaches, does not provide theoretical performance guarantees, so an extensive computational study is conducted, and it is observed to work fairly well in practice. Moreover, conditions characterizing structurally minimal realizations and sufficient conditions characterizing edge loss resulting from the reduction process, are presented. ©2009 IEEE.
Resumo:
Purpose: This paper aims to improve understanding of how to manage global network operations from an engineering perspective. Design/methodology/approach: This research adopted a theory building approach based on case studies. Grounded in the existing literature, the theoretical framework was refined and enriched through nine in-depth case studies in the industry sectors of aerospace, automotives, defence and electrics and electronics. Findings: This paper demonstrates the main value creation mechanisms of global network operations along the engineering value chain. Typical organisational features to support the value creation mechanisms are captured, and the key issues in engineering network design and operations are presented with an overall framework. Practical implications: Evidenced by a series of pilot applications, outputs of this research can help companies to improve the performance of their current engineering networks and design new engineering networks to better support their global businesses and customers in a systematic way. Originality/value: Issues about the design and operations of global engineering networks (GEN) are poorly understood in the existing literature in contrast to their apparent importance in value creation and realisation. To address this knowledge gap, this paper introduces the concept of engineering value chain to highlight the potential of a value chain approach to the exploration of engineering activities in a complex business context. At the same time, it develops an overall framework for managing GEN along the engineering value chain. This improves our understanding of engineering in industrial value chains and extends the theoretical understanding of GEN through integrating the engineering network theories and the value chain concepts. © Emerald Group Publishing Limited.
RE-DESIGNING PD PROCESS ARCHITECTURE BY TRANSFORMING TASK NETWORK MODELS INTO SYSTEM DYNAMICS MODELS
Resumo:
Latent variable models for network data extract a summary of the relational structure underlying an observed network. The simplest possible models subdivide nodes of the network into clusters; the probability of a link between any two nodes then depends only on their cluster assignment. Currently available models can be classified by whether clusters are disjoint or are allowed to overlap. These models can explain a "flat" clustering structure. Hierarchical Bayesian models provide a natural approach to capture more complex dependencies. We propose a model in which objects are characterised by a latent feature vector. Each feature is itself partitioned into disjoint groups (subclusters), corresponding to a second layer of hierarchy. In experimental comparisons, the model achieves significantly improved predictive performance on social and biological link prediction tasks. The results indicate that models with a single layer hierarchy over-simplify real networks.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. The standard approach involves only cross adapting acoustic models. To fully exploit the complimentary features among sub-systems, language model (LM) cross adaptation techniques can be used. Previous research on multi-level n-gram LM cross adaptation is extended to further include the cross adaptation of neural network LMs in this paper. Using this improved LM cross adaptation framework, significant error rate gains of 4.0%-7.1% relative were obtained over acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. Copyright © 2011 ISCA.