242 resultados para ELECTROCHEMICAL GENERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most HMM-based TTS systems use a hard voiced/unvoiced classification to produce a discontinuous F0 signal which is used for the generation of the source-excitation. When a mixed source excitation is used, this decision can be based on two different sources of information: the state-specific MSD-prior of the F0 models, and/or the frame-specific features generated by the aperiodicity model. This paper examines the meaning of these variables in the synthesis process, their interaction, and how they affect the perceived quality of the generated speech The results of several perceptual experiments show that when using mixed excitation, subjects consistently prefer samples with very few or no false unvoiced errors, whereas a reduction in the rate of false voiced errors does not produce any perceptual improvement. This suggests that rather than using any form of hard voiced/unvoiced classification, e.g., the MSD-prior, it is better for synthesis to use a continuous F0 signal and rely on the frame-level soft voiced/unvoiced decision of the aperiodicity model. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials with nonlinear optical properties are much sought after for ultrafast photonic applications. Mode-locked lasers can generate ultrafast pulses using saturable absorbers[1]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs). However, narrow tuning range (tens of nm), complex fabrication and packaging limit their applications[2]. Single wall nanotubes (SWNTs) and graphene offer simpler and cost-effective solutions[1]. Broadband operation can be achieved in SWNTs using a distribution of tube diameters[1,3], or by using graphene[4-8], due to the gapless linear dispersion of Dirac electrons[8,9]. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We mode-lock a fiber oscillator with cavity length of ~1500m using nanotubes, achieving 1.55ps pulses with pulse energy up to 63nJ at 134 KHz repetition rate. © 2010 Optical Society of America.