230 resultados para BOTZINGER-COMPLEX
Resumo:
Large eddy simulation (LES) type studies are made of a realistic geometry coaxial nozzle with a pylon. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving Numerical LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier Stokes) model is used giving a hybrid NLES-RANS approach.The pylon is shown to influence the flow development, having a significant impact on peak turbulence levels and spreading rates. The results show that real geometry effects are influential and should be taken into account when moving towards real engine simulations. If their effects are ignored then, based on the studies here, key turbulence parameters will have significant error.
Resumo:
This paper introduces the Interlevel Product (ILP) which is a transform based upon the Dual-Tree Complex Wavelet. Coefficients of the ILP have complex values whose magnitudes indicate the amplitude of multilevel features, and whose phases indicate the nature of these features (e.g. ridges vs. edges). In particular, the phases of ILP coefficients are approximately invariant to small shifts in the original images. We accordingly introduce this transform as a solution to coarse scale template matching, where alignment concerns between decimation of a target and decimation of a larger search image can be mitigated, and computational efficiency can be maintained. Furthermore, template matching with ILP coefficients can provide several intuitive "near-matches" that may be of interest in image retrieval applications. © 2005 IEEE.
Resumo:
This paper introduces a method by which intuitive feature entities can be created from ILP (InterLevel Product) coefficients. The ILP transform is a pyramid of decimated complex-valued coefficients at multiple scales, derived from dual-tree complex wavelets, whose phases indicate the presence of different feature types (edges and ridges). We use an Expectation-Maximization algorithm to cluster large ILP coefficients that are spatially adjacent and similar in phase. We then demonstrate the relationship that these clusters possess with respect to observable image content, and conclude with a look at potential applications of these clusters, such as rotation- and scale-invariant object recognition. © 2005 IEEE.
Resumo:
The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.