177 resultados para Aligned ZnO Nanorods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs) have the potential to significantly improve upon the sensitivity and minimum detection limit of traditional gravimetric sensors based on quartz crystal microbalances (QCMs) and surface acoustic wave resonators (SAWs). To date, neither FBAR nor SMR devices have been demonstrated to be superior to the other; hence the choice between them depends primarily on the users' ability to design/fabricate membranes and/or Bragg reflectors. In this work, it is shown that identically designed FBAR and SMR devices resonating at the same frequency exhibit different responsivities to mass loadings, Rm, and that the SMRs are less responsive than the FBARs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented here, the FBARs' mass responsivity is ~20% greater than that of the SMRs', and although this value is not universal for all possible device designs, it clearly shows that FBAR devices should be favoured over SMRs in gravimetric sensing applications where the FBARs' fragility is not an issue. Numerical calculations based on Mason's model offer an insight into the physical mechanisms behind the greater FBARs responsivity, and it was shown that the Bragg reflector has an effect on the acoustic load at one of the facets of the piezoelectric films which is in turn responsible for the SMRs' lower responsivity to mass loadings. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline ZnO films with strong (0002) texture and fine grains were deposited onto ultra-nanocrystalline diamond (UNCD) layers on silicon using high target utilization sputtering technology. The unique characteristic of this sputtering technique allows room temperature growth of smooth ZnO films with a low roughness and low stress at high growth rates. Surface acoustic wave (SAW) devices were fabricated on ZnO/UNCD structure and exhibited good transmission signals with a low insertion loss and a strong side-lobe suppression for the Rayleigh mode SAW. Based on the optimization of the layered structure of the SAW device, a good performance with a coupling coefficient of 5.2% has been realized, promising for improving the microfluidic efficiency in droplet transportation comparing with that of the ZnO/Si SAW device. An optimized temperature coefficient of frequency of -23.4 ppm°C-1 was obtained for the SAW devices with the 2.72 μm-thick ZnO and 1.1 μm-thick UNCD film. Significant thermal effect due to the acoustic heating has been redcued which is related to the temperature stability of the ZnO/UNCD SAW device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-smooth nanocrystalline diamond (UNCD) films with high-acoustic wave velocity were introduced into ZnO-based surface acoustic wave (SAW) devices to enhance their microfluidic efficiency by reducing the acoustic energy dissipation into the silicon substrate and improving the acoustic properties of the SAW devices. Microfluidic efficiency of the ZnO-based SAW devices with and without UNCD inter layers was investigated and compared. Results showed that the pumping velocities increase with the input power and those of the ZnO/UNCD/Si devices are much larger than those of the ZnO/Si devices at the same power. The jetting efficiency of the droplet was improved by introducing the UNCD interlayer into the ZnO/Si SAW device. Improvement in the microfluidic efficiency is mainly attributed to the diamond layer, which restrains the acoustic wave to propagate in the top layer rather than dissipating into the substrate. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the domain of energy storage, electrochemical capacitors have numerous applications ranging from hybrid vehicles to consumer electronics, with very high power density at the cost of relatively low energy storage. Here, we report an approach that uses vertically aligned carbon nanotube arrays as electrodes in electrochemical capacitors. Different electrolytes were used and multiple parameters of carbon nanotube array were compared: carbon nanotube arrays were shown to be two to three times better than graphite in term of specific capacitance, while the surface functionalization was demonstrated to be a critical factor in both aqueous and nonaqueous solutions to increase the specific capacitance. We found that a maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg for a hydrophilic electrode, could be easily achieved by using tetraethylammonium tetrafluoroborate in propylene carbonate. These are encouraging results in the path of energy-storage devices with both high energy density and power density, using only carbon-based materials for the electrodes with a very long lifetime, of tens of thousands of cycles. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are promising for microsystems applications, yet few techniques effectively enable integration of CNTs with precise control of placement and alignment of the CNTs at sufficiently high densities necessary for compelling mechanical or electrical performance. This paper explores new methods for scalable integration of dense, horizontally aligned (HA) CNTs with patterned electrodes. Our technique involves the synthesis of vertically aligned (VA) CNTs directly on a conductive underlayer and subsequent mechanical transformation into HA-CNTs, thus making electrical contact between two electrodes. We compare elasto-capillary folding and mechanical rolling as methods for transforming VA-CNTs, which lead to distinctly different HA-CNT morphologies and potentially impact material and device properties. As an example application of this novel CNT morphology, we investigate fabrication of electrically addressable CNT-C60 hybrid thin films that we previously demonstrated as photodetectors. We synthesize these assemblies by crystallizing C60 from dispersion on HA-CNT thin-film scaffoldings. HA-CNTs fabricated by rolling result in relatively low packing density, so C 60 crystals embed inside the HA-CNT matrix during synthesis. On the other hand, C60 crystallization is restricted to near the surface of HA-CNT films made by the elasto-capillary process. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. © 2011 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. ©2011 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼105, a gate leakage current below ∼300 pA, and excellent retention characteristics for over 104 s. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the novel nanocrystalline film ZnO surface acoustic wave devices, which demonstrate their great potential for the portable disease diagnostic system with integrated functions of microfluidic transport, mixing and biosensing. The devices can be easily integrated with electronic control circuitry and fabricated with low temperature process on Si, glass or even polymer substrates. The liquid convection and internal streaming patterns was easily induced by acoustic wave at signal voltages. With further increase in applied voltage to above 20V, the liquid droplet was pushed forward. Immunoreaction-based bio-detection PSA/ACT, all based on SAW devices on thin film piezoelectric ZnO on Si substrate was demonstrated. © 2009 CBMS.