211 resultados para regression algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an entropy argument, it is shown that stochastic context-free grammars (SCFG's) can model sources with hidden branching processes more efficiently than stochastic regular grammars (or equivalently HMM's). However, the automatic estimation of SCFG's using the Inside-Outside algorithm is limited in practice by its O(n3) complexity. In this paper, a novel pre-training algorithm is described which can give significant computational savings. Also, the need for controlling the way that non-terminals are allocated to hidden processes is discussed and a solution is presented in the form of a grammar minimization procedure. © 1990.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamic programming algorithm for joint data detection and carrier phase estimation of continuous-phase-modulated signal is presented. The intent is to combine the robustness of noncoherent detectors with the superior performance of coherent ones. The algorithm differs from the Viterbi algorithm only in the metric that it maximizes over the possible transmitted data sequences. This metric is influenced both by the correlation with the received signal and the current estimate of the carrier phase. Carrier-phase estimation is based on decision guiding, but there is no external phase-locked loop. Instead, the phase of the best complex correlation with the received signal over the last few signaling intervals is used. The algorithm is slightly more complex than the coherent Viterbi algorithm but does not require narrowband filtering of the recovered carrier, as earlier appproaches did, to achieve the same level of performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes two applications in speech recognition of the use of stochastic context-free grammars (SCFGs) trained automatically via the Inside-Outside Algorithm. First, SCFGs are used to model VQ encoded speech for isolated word recognition and are compared directly to HMMs used for the same task. It is shown that SCFGs can model this low-level VQ data accurately and that a regular grammar based pre-training algorithm is effective both for reducing training time and obtaining robust solutions. Second, an SCFG is inferred from a transcription of the speech used to train a phoneme-based recognizer in an attempt to model phonotactic constraints. When used as a language model, this SCFG gives improved performance over a comparable regular grammar or bigram. © 1991.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A block-based motion estimation technique is proposed which permits a less general segmentation performed using an efficient deterministic algorithm. Applied to image pairs from the Flower Garden and Table Tennis sequences, the algorithm successfully localizes motion discontinuities and detects uncovered regions. The algorithm is implemented in C on a Sun Sparcstation 20. The gradient-based motion estimation required 28.8 s CPU time, and 500 iterations of the segmentation algorithm required 32.6 s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper suggests a method for identification in the v-gap metric. For a finite number of frequency response samples, a problem for identification in the v-gap metric is formulated and an approximate solution is described. It uses an iterative technique for obtaining an L2-gap approximation. Each stage of the iteration involves solving an LMI optimisation. Given a known stabilising controller and the L2-gap approximation, it is shown how to derive a v-gap approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forwardbackward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to compute the model uncertainty and the measurement noise. We find that the method is intrinsically very powerful, simple and stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a computational method for the coupled simulation of a compressible flow interacting with a thin-shell structure undergoing large deformations. An Eulerian finite volume formulation is adopted for the fluid and a Lagrangian formulation based on subdivision finite elements is adopted for the shell response. The coupling between the fluid and the solid response is achieved via a novel approach based on level sets. The basic approach furnishes a general algorithm for coupling Lagrangian shell solvers with Cartesian grid based Eulerian fluid solvers. The efficiency and robustness of the proposed approach is demonstrated with a airbag deployment simulation. It bears emphasis that in the proposed approach the solid and the fluid components as well as their coupled interaction are considered in full detail and modeled with an equivalent level of fidelity without any oversimplifying assumptions or bias towards a particular physical aspect of the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a Text-to-Speech system based on time-domain techniques that employ pitch-synchronous manipulation of the speech waveforms, one of the most important issues that affect the output quality is the way the analysis points of the speech signal are estimated and the actual points, i.e. the analysis pitchmarks. In this paper we present our methodology for calculating the pitchmarks of a speech waveform, a pitchmark detection algorithm, which after thorough experimentation and in comparison with other algorithms, proves to behave better with our TD-PSOLA-based Text-to-Speech synthesizer (Time- Domain Pitch-Synchronous Overlap Add Text to Speech System).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a novel algorithm for learning parameters in statistical dialogue systems which are modeled as Partially Observable Markov Decision Processes (POMDPs). The three main components of a POMDP dialogue manager are a dialogue model representing dialogue state information; a policy that selects the system's responses based on the inferred state; and a reward function that specifies the desired behavior of the system. Ideally both the model parameters and the policy would be designed to maximize the cumulative reward. However, while there are many techniques available for learning the optimal policy, no good ways of learning the optimal model parameters that scale to real-world dialogue systems have been found yet. The presented algorithm, called the Natural Actor and Belief Critic (NABC), is a policy gradient method that offers a solution to this problem. Based on observed rewards, the algorithm estimates the natural gradient of the expected cumulative reward. The resulting gradient is then used to adapt both the prior distribution of the dialogue model parameters and the policy parameters. In addition, the article presents a variant of the NABC algorithm, called the Natural Belief Critic (NBC), which assumes that the policy is fixed and only the model parameters need to be estimated. The algorithms are evaluated on a spoken dialogue system in the tourist information domain. The experiments show that model parameters estimated to maximize the expected cumulative reward result in significantly improved performance compared to the baseline hand-crafted model parameters. The algorithms are also compared to optimization techniques using plain gradients and state-of-the-art random search algorithms. In all cases, the algorithms based on the natural gradient work significantly better. © 2011 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the non-parametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive distributions. We derive both efficient Markov chain Monte Carlo and variational Bayes inference procedures for this model. We apply GPRN as a multiple output regression and multivariate volatility model, demonstrating substantially improved performance over eight popular multiple output (multi-task) Gaussian process models and three multivariate volatility models on benchmark datasets, including a 1000 dimensional gene expression dataset.