159 resultados para catch rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of strain rate upon the uniaxial response of Ultra High Molecular-weight Polyethylene (UHMWPE) fibres, yarns and laminates of lay-up [0/90]48 has been measured in both the 0/90 and ±45 configurations. The tensile strength of the matrix-dominated ±45 laminate is two orders of magnitude less than that of the fibre-dominated 0/90 laminate, and is more sensitive to strain rate. A piezoelectric force sensor device was developed to obtain the high strain rate data, and this achieved a rise time of less than 1 μs. It is found that the failure strength (and failure strain) of the yarn is almost insensitive to strain rate within the range (10 -1-103 s-1). At low strain rates (below 10 -1 s-1), creep of the yarn dominates and the failure strain increases with diminishing strain rate. The tensile strength of the dry yarn exceeds that of the laminate by about 20%. Tests on single fibres exceed the strength of the yarn by 20%. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is presented for measuring the exhaust gas recirculation (EGR) and residual gas fraction (RGF) using a fast UEGO based O2 measurement of the manifold or in-cylinder gases, and of the exhaust gases. The technique has some advantages over the more common CO2-based method. In the case of an RGF measurement, fuel interference must be eliminated and special fuelling arrangements are is required. It is shown how a UEGO-based measurement, though sensitive to reactive species in the exhaust (such as H 2), as a system reports EGR/ RGF rates faithfully. Preliminary tests showed that EGR and RGF measurements using the O2 approach agreed well with CO2-based measurements. Copyright © 2011 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of clay is highly dependent on straining and loading rate. To obtain a realistic prediction of the response for time dependent problems, it is essential to use a model that accounts for rate effects in the stress-strain-strength properties of soils. The proposed model has been expanded from the existing SIMPLE DSS framework to account for the strain rate effects on clays in simple shear conditions. In accordance with the findings in the existing literature, soil response displays a unique relationship between shear strength and strain rate. The predicting model is illustrated with a limited test data. Copyright ASCE 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dynamic regime in a multisegmented AlGaAs/GaAs DH injection laser has been realised. Generation of bandwidth-limited 100 GHz repetition rate pulses has been demonstrated. This value is claimed to be the largest ever reported for an ultrashort pulse repetition frequency obtained directly from a laser.