169 resultados para asymmetric loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the earliest possible opportunity. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper presents an analytical mean-line design study for a repeating-stage, axial-flow Low Pressure (LP) turbine. The problem of how to measure blade loading is first addressed. The analysis demonstrates that the Zweifel coefficient [1] is not a reasonable gauge of blade loading because it inherently depends on the flow angles. A more appropriate coefficient based on blade circulation is proposed. Without a large set of turbine test data it is not possible to directly evaluate the accuracy of a particular loss correlation. The analysis therefore focuses on the efficiency trends with respect to flow coefficient, stage loading, lift coefficient and Reynolds number. Of the various loss correlations examined, those based on Ainley and Mathieson ([2], [3], [4]) do not produce realistic trends. The profile loss model of Coull and Hodson [5] and the secondary loss models of Craig and Cox [6] and Traupel [7] gave the most reasonable results. The analysis suggests that designs with the highest flow turning are the least sensitive to increases in blade loading. The increase in Reynolds number lapse with loading is also captured, achieving reasonable agreement with experiments. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to minimize the number of iterations to a turbine design, reasonable choices of the key parameters must be made at the preliminary design stage. The choice of blade loading is of particular concern in the low pressure (LP) turbine of civil aero engines, where the use of high-lift blades is widespread. This paper considers how blade loading should be measured, compares the performance of various loss correlations, and explores the impact of blade lift on performance and lapse rates. To these ends, an analytical design study is presented for a repeating-stage, axial-flow LP turbine. It is demonstrated that the long-established Zweifel lift coefficient (Zweifel, 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection" Brown Boveri Rev., 32(1), pp. 436-444) is flawed because it does not account for the blade camber. As a result the Zweifel coefficient is only meaningful for a fixed set of flow angles and cannot be used as an absolute measure of blade loading. A lift coefficient based on circulation is instead proposed that accounts for the blade curvature and is independent of the flow angles. Various existing profile and secondary loss correlations are examined for their suitability to preliminary design. A largely qualitative comparison demonstrates that the loss correlations based on Ainley and Mathieson (Ainley and Mathieson, 1957, "A Method of Performance Estimation for Axial-Flow Turbines," ARC Reports and Memoranda No. 2974; Dunham and Came, 1970, "Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction," Trans. ASME: J. Eng. Gas Turbines Power, July, pp. 252-256; Kacker and Okapuu, 1982, "A Mean Line Performance Method for Axial Flow Turbine Efficiency," J. Eng. Power, 104, pp. 111-119). are not realistic, while the profile loss model of Coull and Hodson (Coull and Hodson, 2011, "Predicting the Profile Loss of High-Lift Low Pressure Turbines," J. Turbomach., 134(2), pp. 021002) and the secondary loss model of (Traupel, W, 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin) are arguably the most reasonable. A quantitative comparison with multistage rig data indicates that, together, these methods over-predict lapse rates by around 30%, highlighting the need for improved loss models and a better understanding of the multistage environment. By examining the influence of blade lift across the Smith efficiency chart, the analysis demonstrates that designs with higher flow turning will tend to be less sensitive to increases in blade loading. © 2013 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallels between the dynamic response of flexible bridges under the action of wind and under the forces induced by crowds allow each field to inform the other.Wind-induced behaviour has been traditionally classified into categories such as flutter, galloping, vortex-induced vibration and buffeting. However, computational advances such as the vortex particle method have led to a more general picture where effects may occur simultaneously and interact, such that the simple semantic demarcations break down. Similarly, the modelling of individual pedestrians has progressed the understanding of human–structure interaction, particularly for large amplitude lateral oscillations under crowd loading. In this paper, guided by the interaction of flutter and vortexinduced vibration in wind engineering, a framework is presented, which allows various human–structure interaction effects to coexist and interact, thereby providing a possible synthesis of previously disparate experimental and theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite structures exhibit many different failure mechanisms, but attempts to model composite failure frequently make a priori assumptions about the mechanism by which failure will occur. Wang et al. [1] conducted compressive tests on four configurations of composite specimen manufactured with out-of-plane waviness created by ply-drop defects. There were significantly different failures for each case. Detailed finite element models of these experiments were developed which include competing failure mechanisms. The model predictions correlate well with experimental results-both qualitatively (location of failure and shape of failed specimen) and quantitatively (failure load). The models are used to identify the progression of failure during the compressive tests, determine the critical failure mechanism for each configuration, and investigate the effect of cohesive parameters upon specimen strength. This modelling approach which includes multiple competing failure mechanisms can be applied to predict failure in situations where the failure mechanism is not known in advance. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of vibration-based damage detection of concrete structures efficient damage models are needed to better understand changes in the vibration properties of cracked structures. These models should quantitatively replicate the damage mechanisms in concrete and easily be used as damage detection tools. In this paper, the flexural cracking behaviour of plain concrete prisms subject to monotonic and cyclic loading regimes under displacement control is tested experimentally and modelled numerically. Four-point bending tests on simply supported un-notched prisms are conducted, where the cracking process is monitored using a digital image correlation system. A numerical model, with a single crack at midspan, is presented where the cracked zone is modelled using the fictitious crack approach and parts outside that zone are treated in a linear-elastic manner. The model considers crack initiation, growth and closure by adopting cyclic constitutive laws. A multi-variate Newton-Raphson iterative solver is used to solve the non-linear equations to ensure equilibrium and compatibility at the interface of the cracked zone. The numerical results agree well with the experiments for both loading scenarios. The model shows good predictions of the degradation of stiffness with increasing load. It also approximates the crack-mouth-opening-displacement when compared with the experimental data of the digital image correlation system. The model is found to be computationally efficient as it runs full analysis for cyclic loading in less than 2. min, and it can therefore be used within the damage detection process. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plate anchors are increasingly being used to moor large floating offshore structures in deep and ultradeep water. These facilities impart substantial vertical uplift loading to plate anchors. However, extreme operating conditions such as hurricane loading often result in partial system failures, with significant change in the orientation of the remaining intact mooring lines. The purpose of this study is to investigate the undrained pure translational (parallel to plate) and torsional bearing capacity of anchor plates idealized as square and rectangular shaped plates. Moreover, the interaction response of plate anchors under combined translational and torsional loading is studied using a modified plastic limit analysis (PLA) approach. The previous PLA formulation which did not account for shear-normal force interaction on the vertical end faces of the plate provides an exact solution to the idealized problem of an infinitely thin plate but only an approximate solution to the problem of a plate of finite thickness. This is also confirmed by the three-dimensional finite element (FE) results, since the PLA values exceed FE results as the thickness of the plate increases. By incorporating the shear-normal interaction relationship in the modified solution, the torsional bearing capacity factors, as well as the plate interaction responses are enhanced as they show satisfactory agreement with the FE results. The interaction relationship is then obtained for square and rectangular plates of different aspect ratios and thicknesses. The new interaction relationships could also be used as an associated plastic failure locus for combined shear and torsional loading to predict plastic displacements and rotations in translational and torsional loading modes as well. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented to predict the transient response of a structure at the driving point following an impact or a shock loading. The displacement and the contact force are calculated solving the discrete convolution between the impulse response and the contact force itself, expressed in terms of a nonlinear Hertzian contact stiffness. Application of random point process theory allows the calculation of the impulse response function from knowledge of the modal density and the geometric characteristics of the structure only. The theory is applied to a wide range of structures and results are experimentally verified for the case of a rigid object hitting a beam, a plate, a thin and a thick cylinder and for the impact between two cylinders. The modal density of the flexural modes for a thick slender cylinder is derived analytically. Good agreement is found between experimental, simulated and published results, showing the reliability of the method for a wide range of situations including impacts and pyroshock applications. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of changes in vibration properties for global damage detection and monitoring of existing concrete structures has received great research attention in the last three decades. To track changes in vibration properties experimentally, structures have been artificially damaged by a variety of scenarios. However, this procedure does not represent realistically the whole design-life degradation of concrete structures. This paper presents experimental work on a set of damaged reinforced concrete beams due to different loading regimes to assess the sensitivity of vibration characteristics. Of the total set, three beams were subject to incremental static loading up to failure to simulate overloading, and two beams subject to 15 million loading cycles with varying amplitudes to produce an accelerated whole-life degradation scenario. To assess the vibration behaviour in both cases, swept sine and harmonic excitations were conducted at every damage level. The results show that resonant frequencies are not sensitive enough to damage due to cyclic loading, whereas cosh spectral and root mean square distances are more sensitive, yet more scattered. In addition, changes in non-linearity follow a softening trend for beams under incremental static loading, whilst they are significantly inconsistent for beams under cyclic loading. Amongst all examined characteristics, changes in modal stiffness are found to be most sensitive to damage and least scattered, but modal stiffness is tedious to compute due mainly to the difficulty of constructing restoring force surfaces from field measurements. © (2013) Trans Tech Publications.