193 resultados para Vortex Dislocation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted investigating the interaction between a normal shock wave and a corner boundary layer in a constant area rectangular duct. Active corner suction and passive blowing were applied to manipulate the natural corner flows developing in the working section of the Cambridge University supersonic wind tunnel. In addition robust vane micro-vortex generators were applied to the corners of the working section. Experiments were conducted at Mach numbers of M∞=1.4 and 1.5. Flow visualisation was carried out through schlieren and surface oil flow, while static pressures were recorded via floor tappings. The results indicate that an interplay occurs between the corner flow and the centre line flow. It is believed that corner flow separation acts to induce a shock bifurcation, which in turn leads to a smearing of the adverse pressure gradient elsewhere. In addition the blockage effect from the corners was seen to result in a reacceleration of the subsonic post-shock flow. As a result manipulation of the corner regions allows a separated or attached centre line flow to be observed at the same Mach number. Copyright © 2010 by Babinsky, Burton, Bruce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrodynamic properties of free surface vortices at hydraulic intakes were investigated. Based on the axisymmetric Navier-Stokes equations and empirical assumptions, two sets of formulations for the velocity distributions and the free surface profiles are proposed and validated against measurements available in the literature. Compared with previous formulae, the modifications based on Mih's formula are found to greatly improve the agreement with the experimental data. Physical model tests were also conducted to study the intake vortex of the Xiluodu hydroelectric project in China. The proposed velocity distribution formula was applied to the solid boundary as considered by the method of images. A good agreement was again observed between the prediction and the measurements. © 2011 International Association for Hydro-Environment Engineering and Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The critical current density Jc of an MOCVD/IBAD coated conductor was measured on tracks patterned longitudinally (L) and transversely (T) to the tape direction. Despite the samples' vicinality no dependence J c of on track direction was found for magnetic fields applied perpendicular to the film plane. In angular out-of-plane measurements the previously reported asymmetry due to tilted precipitate planes was observed in an L track, whereas curves from a T track were almost perfectly symmetric with similarly high absolute values of Jc. At low fields the effects of surface pinning were seen. Our results show that in most scenarios the current carrying capability is equally as good parallel and perpendicular to the tape direction, which is highly relevant for ROEBEL cables. In measurements where the magnetic field was swept in the film plane the anisotropy was found to be significantly higher than for MOD/RABiTS samples, which we explain by the different morphology of grain boundaries in the tapes. At low temperatures Jc of a T track exhibited a clear signature of vortex channeling. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter focuses on relationships between plastic deformation structures and mechanical properties in metals and alloys deforming by dislocation glide. We start by summarizing plastic deformation processes, then look at the fundamental mechanisms of plastic deformation and explore how deformation structures evolve. We then turn to experimental techniques for characterization which have allowed deformation microstructures to be quantified in terms of common structural parameters. The microstructural evolution has been described over many length scales and analyzed theoretically based on general principles. The deformation microstructures are related to work hardening stages. Finally we identify correlations between a wide range of microstructural features and mechanical properties, particularly flow stress, and use experimental observations to illustrate their inter-relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth techniques which have enabled the realization of InGaN-based multi-quantum-well (MQW) structures with high internal quantum efficiencies (IQE) on 150mm (6-in.) silicon substrates are reviewed. InGaN/GaN MQWs are deposited onto GaN templates on large-area (111) silicon substrates, using AlGaN strain-mediating interlayers to inhibit thermal-induced cracking and wafer-bowing, and using a SiN x interlayer to reduce threading dislocation densities in the active region of the MQW structure. MQWs with high IQE approaching 60% have been demonstrated. Atomic resolution electron microscopy and EELS analysis have been used to study the nature of the important interface between the Si(111) substrate and the AlN nucleation layer. We demonstrate an amorphous SiN x interlayer at the interface about 2nm wide, which does not, however, prevent good epitaxy of the AlN on the Si(111) substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbulence statistics have been measured immediately downstream of a regular grid made of round rods with rod spacing M. 2D-2C PIV was used to analyse a measurement area of 14M x 4M in the down and cross-stream directions respectively. The relevant Reynolds number span the range Re M = U ∞M/ν = 5 500 - 16 500. The Reynolds shear stresses recorded on two parallel measurement planes differently located relative to the grid exhibit significant discrepancies over the first 5M, but have completely homogenised in the cross-stream direction by x/M = 7. The downstream evolution of the two-point velocity correlation functions shows a progressive loss of coherence and a clear trend towards the expected isotropic behavior. The same conclusions apply to measurements taken in the wake of another regular grid made of square rods. Changes in the vortex shedding pattern from the grid were observed at the lowest Reynolds number, with two of the four rod wakes captured shedding in phase with each other but in anti-phase with a third one. The impact of this early flow coherence on the turbulence statistics did not persist due to the homogenisation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed experimental investigations of the amplitude dependence of flame describing functions (FDF) were performed using a stratified swirl-stabilized combustor, in order to understand the combustion-acoustic interactions of CH4/air flames propagating into nonhomogeneous reactant stoichiometry. Phase-synchronized OH planar laser induced fluorescence (OH PLIF) measurements were used to investigate local reaction zone structures of forced flames. To determine the amplitude-and frequency-dependent forced flame response, simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. The measurements were made over a wide range of stratification ratios, including inner stream enrichment ( θ o>θ i) and outer stream enrichment ( θ o>θ i)) conditions, and compared to the baseline condition of spatially and temporally homogeneous cases ( θ o=θ i)). Results show that for the inlet conditions investigated, fuel stratification has a significant influence on local and global flame structures of unforced and forced flames. Under stratified conditions, length scales of local contours were found to be much larger than the homogeneous case due to high kinematic viscosities associated with high temperature. Stratification has a remarkable effect on flame-vortex interactions when the flame is subjected to high-amplitude acoustic forcing, leading to different evolution patterns of FDF (amplitude and disturbance convective time) in response to the amplitude of the imposed inlet velocity oscillation. The present experimental investigation reveals that intentional stratification has the potential to eliminate or suppress the occurrence of detrimental combustion instability problems in lean-premixed gas turbine combustion systems. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports an extensive analysis of the defect-related localized emission processes occurring in InGaN/GaN-based light-emitting diodes (LEDs) at low reverse- and forward-bias conditions. The analysis is based on combined electrical characterization and spectrally and spatially resolved electroluminescence (EL) measurements. Results of this analysis show that: (i) under reverse bias, LEDs can emit a weak luminescence signal, which is directly proportional to the injected reverse current. Reverse-bias emission is localized in submicrometer-size spots; the intensity of the signal is strongly correlated to the threading dislocation (TD) density, since TDs are preferential paths for leakage current conduction. (ii) Under low forward-bias conditions, the intensity of the EL signal is not uniform over the device area. Spectrally resolved EL analysis of green LEDs identifies the presence of localized spots emitting at 600 nm (i.e., in the yellow spectral region), whose origin is ascribed to localized tunneling occurring between the quantum wells and the barrier layers of the diodes, with subsequent defect-assisted radiative recombination. The role of defects in determining yellow luminescence is confirmed by the high activation energy of the thermal quenching of yellow emission (Ea =0.64&eV). © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation to identify the source conditions that distinguish finite-volume negatively buoyant fluid projectile behaviour from fountain behaviour in quiescent environments of uniform density is described. Finite-volume releases are governed by their source Froude number Fr D and the aspect ratio L/D of the release, where L denotes the length of the column of fluid dispensed vertically from the nozzle of diameter D. We establish the influence of L/D on the peak rise heights of a release formed by dispensing saline solution into fresh water for 0vortex, as fluid is ejected, has a profound influence on the length of the dispensed fluid column that is necessary to achieve rise heights equal to fountain rise heights. © 2012 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of an experimental investigation across a broad range of source Froude numbers, 0. 4 ≤ Fr 0 ≤ 45, into the dynamics, morphology and rise heights of Boussinesq turbulent axisymmetric fountains in quiescent uniform environments. Typically, these fountains are thought to rise to an initial height, z i, before settling back and fluctuating about a lesser (quasi-) steady height, z ss. Our measurements show that this is not always the case and the ratio of the fountain's initial rise height to steady rise height, λ = z i/z ss, varies widely, 0. 5 ≈ λ ≈ 2, across the range of Fr 0 investigated. As a result of near-ideal start-up conditions provided by the experimental set-up we were consistently able to form a vortex at the fountain's front. This enabled new insights into two features of the initial rise of turbulent fountains. Firstly, for 1. 0 ≈ Fr 0 ≈ 1. 7 the initial rise height is less than the steady rise height. Secondly, for Fr 0 ≈ 5. 5, the vortex formed at the fountain's front pinches off, separates from the main body and rises high above the fountain; there is thus a third rise height to consider, namely, the maximum vortex rise height, z v. From our observations we propose classifying turbulent axisymmetric fountains into five regimes (as opposed to the current three regimes) and present detailed descriptions of the flow in each. Finally, based on an analysis of the rise height fluctuations and the width of fountains in (quasi-) steady state we provide further insight into the physical cause of height fluctuations. © 2011 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex-flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex-flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. © 2013 IOP Publishing Ltd.