212 resultados para Soil Pollutants, Radioactive
Resumo:
The dynamic properties of dry Leighton Buzzard sand have been investigated using a resonant column test apparatus. These data are compared with very low frequency cyclic tests on identical specimens of sand. The comparison indicates that the properties of dry sand are independent of frequency. A simple one-dimensional model of kinematic hardening plasticity is used to predict the dynamic behaviour of the sand. The input parameters for this model are based on the results of static tests. These may be conducted on standard laboratory equipment with only minor modifications. The predictions are in good agreement with the measured data.
Resumo:
The modeling of the soil plasticity was discussed and it was shown that the grain breakage is an important factor of the plastic soil behaviour. A reduction of internal coefficient of friction was observed when stress-level was increased. The yield paths of all stress path tests determined by curve fitting were presented.
Resumo:
The CTRL Contract 220 covered 7.5km twin-bore tunnels excavated between late 2002 and early 2004 from Stratford Box to St Pancras station in Central London. To ensure efficient machine operation as well as the transport and disposal of soil, soil conditioning treatments were applied. Specifically, the foam injection ratio (FIR) and the polymer injection ratio (PIR) (injected volume of foam and polymer solution expressed as a percentage of the excavated soil volume) were employed. It was found that carefully selected soil conditioning allowed chamber pressures of 200kPa or more to be accurately controlled in the stiff London Clay and to an extent, in the very stiff clays of the Lambeth Group. Average FIRs of 50% and PIRs of 7 and 9% were used in the Thanet Sand and in the Lambeth Group Clays. In contrast, much lower quantities of foam were used in the London Clay.
Resumo:
The soil-pipeline interactions under lateral and upward pipe movements in sand are investigated using DEM analysis. The simulations are performed for both medium and dense sand conditions at different embedment ratios of up to 60. The comparison of peak dimensionless forces from the DEM and earlier FEM analyses shows that, for medium sand, both methods show similar peak dimensionless forces. For dense sand, the DEM analysis gives more gradual transition of shallow to deep failure mechanisms than the FEM analysis and the peak dimensionless forces at very deep depth are higher in the DEM analysis than in the FEM analysis. Comparison of the deformation mechanism suggests that this is due to the differences in soil movements around the pipe associated with its particulate nature. The DEM analysis provides supplementary data of the soil-pipeline interaction in sand at deep embedment condition.
Resumo:
Previous research into the behaviour of piled foundations in laterally-spreading soil deposits has concentrated on pile groups that carry small or negligible axial loads. This paper presents dynamic centrifuge test results for 2 x 2 pile groups with bending and geometric properties similar to real 0.5 m diameter tubular steel and solid circular reinforced-concrete field piles. Axial loads applied represented upper-bounds on typical working loads. The simultaneous scaling of the relevant properties controlling both lateral and axial behaviour allows comparisons to be drawn regarding the particular mechanisms of failure that would dominate for each type of pile. Flexible reinforced-concrete piles which tend to carry lower loads were found to be dominated by lateral effects, while steel piles, which are much stiffer and usually carry greater loads are dominated by settlement considerations. © 2006 Taylor & Francis Group.
Resumo:
Portland cement is the most commonly and widely used binder in ground improvement soil stabilisation applications. However, many changes are now affecting the selection and application of stabilisation additives. These include the significant environmental impacts of Portland cement, increased use of industrial by-products and their variability, increased range of application of binders and the development of alternative cements and novel additives with enhanced environmental and technical performance. This paper presents results from a number of research projects on the application of a number of Portland cement-blended binders, which offer sustainability advantages over Portland cement alone, in soil stabilisation. The blend materials included ground granulated blastfurnace slag, pulverised fuel ash, cement kiln dust, zeolite and reactive magnesia and stabilised soils, ranging from sand and gravel to clay, and were assessed based on their mechanical performance and durability. The results are presented in terms of strength and durability enhancements offered by those blended binders.
Resumo:
Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.
Resumo:
Research has begun on Microbial Carbonate Precipitation (MCP), which shows promise as a soil improvement method because of its low carbon dioxide emission compared to cement stabilized agents. MCP produces calcium carbonate from carbonates and calcium in soil voids through ureolysis by "Bacillus Pasteurii". This study focuses on how the amount of calcium carbonate precipitation is affected by the injection conditions of the microorganism and nutrient salt, such as the number of injections and the soil type. Experiments were conducted to simulate soil improvement by bio-grouting soil in a syringe. The results indicate that the amount of precipitation is affected by injection conditions and soil type, suggesting that, in order for soil improvement by MCP to be effective, it is necessary to set injection conditions that are in accordance with the soil conditions. © 2011 ASCE.
Resumo:
This paper introduces current work in collating data from different projects using soil mix technology and establishing trends using artificial neural networks (ANNs). Variation in unconfined compressive strength as a function of selected soil mix variables (e.g., initial soil water content and binder dosage) is observed through the data compiled from completed and on-going soil mixing projects around the world. The potential and feasibility of ANNs in developing predictive models, which take into account a large number of variables, is discussed. The main objective of the work is the management and effective utilization of salient variables and the development of predictive models useful for soil mix technology design. Based on the observed success in the predictions made, this paper suggests that neural network analysis for the prediction of properties of soil mix systems is feasible. © ASCE 2011.
Resumo:
The past 15 years have seen increasing applications of soil mix technology in land remediation, mainly in stabilisation/solidification treatments and the construction of low-permeability cut-off walls and permeable reactive barriers; clear evidence of the versatility of the technology and its wide-ranging applications. This paper provides an overview of some of the recent innovations of soil mix technology in land remediation covering equipment developments and applications, including systems for rectangular panels and trenching systems, treatments, such as chemical oxidation, and additives, such as modified clays, zeolites and reactive magnesia. The paper also provides case studies for such innovations. The paper concludes with an overview of an on-going research and development project SMiRT (Soil Mix Remediation Technology) which will involve field trials on a contaminated site and will employ some of the innovations discussed in the paper. The range of significant advantages that soil mix technology now offers compared to other remediation techniques is likely to place this remediation method at the forefront of remedial options for future brownfield projects.
Resumo:
The effects of initial soil fabric on behaviors of granular soils are investigated by using Distinct Element Method (DEM) numerical simulation. Soil specimens are represented by an assembly of non-uniform sized spheres with different initial contact normal distributions. Isotropically consolidated triaxial compression loading and extension unloading in both undrained and drained conditions are simulated for vertically- and horizontally-sheared specimens. The numerical simulation results are compared qualitatively with the published experimental data and the effects of initial soil fabric on resulting soil behaviors are discussed, including the effects of specimen reconstitution methods, effects of large preshearing, and anisotropic characteristics in undrained and drained conditions. The effects of initial soil fabric and mode of shearing on the quasi-steady state line are also investigated. The numerical simulation results can systematically explain that the observed experimental behaviors of granular soils are due principally to their conditions of the initial soil fabric. This outcome provides insights into the observed phenomena in microscopic view. © 2011 Elsevier Ltd.
Resumo:
Soil-mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil-mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite-GZ), (ii) a granular organoclay (GO), (iii) a 1:1-mixture GZ and model sandy clayey soil and (iv) a 1:1:1-mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900mL and sorbent mass 18g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5mM (2.5 to 30mg/L). The maximum metal retention was measured in a batch test (300mg/L for each metal, volume 900mL, sorbent mass 90-4.5g). The reactive material efficiency order was found to be GZ>GZ-soil mix>GZ-soil-GO mix>GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1-mix were very similar. The maximum retention capacity was 0.1-0.2mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater. The laboratory experiments consisted of batch tests with a multimetal solution of Pb, Cu, Zn, Cd and Ni. The four reactive materials chosen were granular zeolite, clinoptilolite and model sandy clayey soil, granular organoclay and a mix of clinoptilolite, model soil and organoclay. The reactive material efficiency order was found to be granular clinoptilolite>clinoptilolite-soil mix>clinoptilolite-soil-organoclay mix>granular organoclay. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.