209 resultados para Pipe, Concrete
Resumo:
PiP software is a powerful computational tool for calculating vibration from underground railways and for assessing the performance of vibration countermeasures. The software has a user-friendly interface and it uses the state-of-the-art techniques to perform quick calculations for the problem. The software employs a model of a slab track coupled to a circular tunnel embedded in the ground. The software calculates the Power Spectral Density (PSD) of the vertical displacement at any selected point in the soil. Excitation is assumed to be due to an infinitely-long train moving on a slab-track supported at the tunnel bed. The PSD is calculated for a roughness excitation of a unit value (i.e. "white noise"). The software also calculates the Insertion Gain (IG) which is the ratio between the PSD displacement after and before changing parameters of the track, tunnel or soil. Version 4 of the software accounts for important developments of the numerical model. The tunnel wall is modelled as a thick shell (using the elastic continuum theory) rather than a thin shell. More importantly, the numerical model accounts now for a tunnel embedded in a half space rather than a full space as done in the previous versions. The software can now be used to calculate vibration due to a number of typical PSD roughnesses for rails in good, average and bad conditions.
Resumo:
The creep effects on sequentially built bridges are analysed by the theory of thermal creep. Two types of analysis are used: time dependent and steady state. The traditional uniform creep analysis is also introduced briefly. Both simplified and parabolic normalising creep-temperature functions are used in the analysis for comparison. Numerical examples are presented, calculated by a computer program based on the theory of thermal creep and using the displacement method. It is concluded that different assumptions within thermal creep can lead to very different results when compared with uniform creep analysis. The steady-state analysis of monolithically built structures can serve as a limit to evaluate total creep effects for both monolithically and sequentially built structures. The importance of the correct selection of the normalising creep-temperature function is demonstrated.
Resumo:
This paper describes an experimental study of a new form of prestressed concrete beam. Aramid Fiber Reinforced Polymers (AFRPs) are used to provide compression confinement in the form of interlocking circular spirals, while external tendons are made from parallel-lay aramid ropes. The response shows that the confinement of the compression flange significantly increases the ductility of the beam, allowing much better utilization of the fiber strength. The failure of the beam is characterized by rupture of spiral confinement reinforcement.