154 resultados para Nutritional stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is presented to resolve bias-induced metastability mechanisms in hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). The post stress relaxation of threshold voltage (V(T)) was employed to quantitatively distinguish between the charge trapping process in gate dielectric and defect state creation in active layer of transistor. The kinetics of the charge de-trapping from the SiN traps is analytically modeled and a Gaussian distribution of gap states is extracted for the SiN. Indeed, the relaxation in V(T) is in good agreement with the theory underlying the kinetics of charge de-trapping from gate dielectric. For the TFTs used in this work, the charge trapping in the SiN gate dielectric is shown to be the dominant metastability mechanism even at bias stress levels as low as 10 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brittleness is the unintended, but inevitable consequence of producing a transparent ceramic for architectural applications such as the soda-lime glass. Its tensile strength is particularly sensitive to surface imperfections, such as that from natural weathering and malicious damage. Although a significant amount of testing of new glass has been carried out, there has been surprisingly little testing on weathered glass. Due to the variable nature of the causes of surface damage, the lack of data on weathered glass leads to a considerable degree of uncertainty in the long-term strength of exposed glass. This paper presents the results of recent tests on weathered annealed glass which has been exposed to natural weathering for more than 20 years. The tests include experimental investigations using the co-axial ring setup as well as optical and atomic force microscopy of the glass surfaces. The experimental data from these tests is subsequently used to extend existing fracture mechanics-based models to predict the strength of weathered glass. It is shown that using an automated approach based directly on finite element analysis results can give an increase in effective design strength in the order of 70 to 100% when compared to maximum stress methods. It is also shown that by combining microscopy and strength test results, it is possible to quantitatively characterise the damage on glass surfaces.