176 resultados para High-speed cavity preparation
Resumo:
Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.
Resumo:
The airflow between the fast-moving substrate and stationary print heads in a web print press may cause print quality issues in high-speed, roll-to-roll printing applications. We have studied the interactions between ink drops and the airflow in the gap between the printhead and substrate, by using an experimental flow channel and high-speed imaging. The results show: 1) the gap airflow is well approximated by a standard Couette flow profile; 2) the effect of gap airflow on the flight paths of main drops and satellites is negligible; and 3) the interaction between the gap airflow and the wakes from the printed ink drops should be investigated as the primary source of aerodynamically- related print quality issues. ©2012 Society for Imaging Science and Technology.
Resumo:
The failure mode of axially loaded simple, single lap joints formed between thin adherends which are flexible in bending is conventionally described as one of axial peeling. We have observed - using high-speed photography - that it is also possible for failure to be preceded by the separation front, or crack, moving in a transverse direction, i.e. perpendicular to the direction of the axial load. A simple energy balance analysis suggests that the critical load for transverse failure is the same as that for axial separation for both flexible lap joints, where the bulk of the stored elastic energy lies in the adhesive, and structural lap joints in which the energy stored in the adherends dominates. The initiation of the failure is dependent on a local increases in either stress or strain energy to some critical values. In the case of a flexible joint, this will occur within the adhesive layer and the critical site will be close to one of the corners of the joint overlap from which the separation front can proceed either axially or transversely. These conclusions are supported by a finite element analysis of a joint formed between adherends of finite width by a low modulus adhesive. © 2012 Taylor & Francis.
Resumo:
This paper demonstrates the application of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques to a particle-laden reacting flow of pulverized coal. A laboratory-scale open-type annular burner is utilized to generate velocity profiles of coal particles and micrometric alumina particles. Pair-wise two-component LDV measurements and high-speed stereo PIV measurements provide three-dimensional velocity components of the flow field. A detailed comparison of velocities for alumina and coal particle seeding revealed differences attributed to the wide size distribution of coal particles. In addition, the non-spherical shape and high flame luminosity associated with coal particle combustion introduces noise to the Mie scatter images. The comparison of mean and RMS velocities measured by LDV and PIV techniques showed that PIV measurements are affected by the wide size distribution of coal particles, whereas LDV measurements become biased toward the velocity of small particles, as signals from large particles are rejected. This small-particle bias is also reflected in the spectral characteristics for both techniques, which are in good agreement within the range of frequencies accessible. PIV measurements showed an expected lack of response of large coal particles to the turbulence fluctuations. The overall good agreement between LDV and PIV measurements demonstrates the applicability of the high-speed PIV technique to a particle-laden, high luminosity coal flame while highlighting some of its limitations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
It is well known that accurate EGR control is paramount to controlling engine out emissions during steady state and transient operation of a diesel engine. The direct measurement of EGR is however non-trivial and especially difficult in engines with no external EGR control where the intake manifold CO2 levels can be measured more readily. This work studies the EGR behaviour in a medium duty diesel engine with a passive EGR rebreathing strategy for steady state and transient operation. High speed (response time ∼1ms) in-cylinder sampling using modified GDI valves is coupled with high frequency response analysers to measure the cyclic in-cylinder CO2, from which the EGR rate is deduced. It was found that controlling the EGR using the passive rebreathing strategy during certain combined speed and load transients is challenging, causing high smoke and NO emissions. The in-cylinder sampling method coupled with fast CO2 measurement (time constant ∼8ms) in the exhaust port gave insights about the EGR rate during these transients. The complex interaction of the manifold pressures, turbo-charger operation and trapped charge composition from the previous cycle simply can cause high dilution and therefore high smoke levels. The steady state variation of NO emissions with respect to EGR is also studied using a fast NO analyzer (time constant ∼2ms) in the exhaust port. Cyclic variation was found to be up to ±5% at some load conditions. © 2008 SAE International.
Resumo:
In order to understand how unburned hydrocarbons emerge from SI engines and, in particular, how non-fuel hydrocarbons are formed and oxidized, a new gas sampling technique has been developed. A sampling unit, based on a combination of techniques used in the Fast Flame Ionization Detector (FFID) and wall-mounted sampling valves, was designed and built to capture a sample of exhaust gas during a specific period of the exhaust process and from a specific location within the exhaust port. The sampling unit consists of a transfer tube with one end in the exhaust port and the other connected to a three-way valve that leads, on one side, to a FFID and, on the other, to a vacuum chamber with a high-speed solenoid valve. Exhaust gas, drawn by the pressure drop into the vacuum chamber, impinges on the face of the solenoid valve and flows radially outward. Once per cycle during a specified crank angle interval, the solenoid valve opens and traps exhaust gas in a storage unit, from which gas chromatography (GC) measurements are made. The port end of the transfer tube can be moved to different locations longitudinally or radially, thus allowing spatial resolution and capturing any concentration differences between port walls and the center of the flow stream. Further, the solenoid valve's opening and closing times can be adjusted to allow sampling over a window as small as 0.6 ms during any portion of the cycle, allowing resolution of a crank angle interval as small as 15°CA. Cycle averaged total HC concentration measured by the FFID and that measured by the sampling unit are in good agreement, while the sampling unit goes one step further than the FFID by providing species concentrations. Comparison with previous measurements using wall-mounted sampling valves suggests that this sampling unit is fully capable of providing species concentration information as a function of air/fuel ratio, load, and engine speed at specific crank angles. © Copyright 1996 Society of Automotive Engineers, Inc.
Resumo:
The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.
Resumo:
Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a 'command steer' control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, 'active' steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range. © VC 2013 by ASME.
Resumo:
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Resumo:
GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size. © 2011 World Scientific Publishing Company.
Resumo:
An experimental technique has been developed in order to mimic the effect of landmine loading on materials and structures to be studied in a laboratory setting, without the need for explosives. Compressed gas is discharged beneath a sand layer, simulating the dynamic flow generated by a buried explosive. High speed photography reveals that the stages of soil motion observed during a landmine blast are replicated. The effect of soil saturation and the depth of the sand layer on sand motion are evaluated. Two series of experiments have been performed with the buried charge simulator to characterise subsequent impact of the sand. First, the time variation in pressure and impulse during sand impact on a stationary target is evaluated using a Kolsky bar apparatus. It is found that the pressure pulse imparted to the Kolsky bar consists of two phases: an initial transient phase of high pressure (attributed to wave propagation effects in the impacting sand), followed by a lower pressure phase of longer duration (due to lateral flow of the sand against the Kolsky bar). Both phases make a significant contribution to the total imparted impulse. It is found that wet sand exerts higher peak pressures and imparts a larger total impulse than dry sand. The level of imparted impulse is determined as a function of sand depth, and of stand-off distance between the sand and the impacted end of the Kolsky bar. The second study uses a vertical impulse pendulum to measure the momentum imparted by sand impact to a target which is free to move vertically. The effect of target mass upon imparted momentum is investigated. It is concluded that the laboratory-scale sand impact apparatus is a flexible tool for investigating the interactions between structures and dynamic sand flows. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we describe the time-varying amplitude and its relation to the global heat release rate of self-excited azimuthal instabilities in a simple annular combustor operating under atmospheric conditions. The combustor was modular in construction consisting of either 12, 15 or 18 equally spaced premixed bluff-body flames around a fixed circumference, enabling the effect of large-scale interactions between adjacent flames to be investigated. High-speed OH* chemiluminescence imaged from above the annulus and pressure measurements obtained at multiple locations around the annulus revealed that the limit cycles of the modes are degenerate in so much as they undergo continuous transitions between standing and spinning modes in both clockwise (CW) and anti-clockwise (ACW) directions but with the same resonant frequency. Similar behaviour has been observed in LES simulations which suggests that degenerate modes may be a characteristic feature of self-excited azimuthal instabilities in annular combustion chambers. By modelling the instabilities as two acoustic waves of time-varying amplitude travelling in opposite directions we demonstrate that there is a statistical prevalence for either standing m=1 or spinning m=±1 modes depending on flame spacing, equivalence ratio, and swirl configuration. Phase-averaged OH* chemiluminescence revealed a possible mechanism that drives the direction of the spinning modes under limit-cycle conditions for configurations with uniform swirl. By dividing the annulus into inner and outer annular regions it was found that the spin direction coincided with changes in the spatial distribution of the peak heat release rate relative to the direction of the bulk swirl induced along the annular walls. For standing wave modes it is shown that the globally integrated fluctuations in heat release rate vary in magnitude along the acoustic mode shape with negligible contributions at the pressure nodes and maximum contributions at the pressure anti-nodes. © 2013.
Resumo:
The coalescence and mixing of a sessile and an impacting liquid droplet on a solid surface are studied experimentally and numerically in terms of lateral separation and droplet speed. Two droplet generators are used to produce differently colored droplets. Two high-speed imaging systems are used to investigate the impact and coalescence of the droplets in color from a side view with a simultaneous gray-scale view from below. Millimeter-sized droplets were used with dynamical conditions, based on the Reynolds and Weber numbers, relevant to microfluidics and commercial inkjet printing. Experimental measurements of advancing and receding static contact angles are used to calibrate a contact angle hysteresis model within a lattice Boltzmann framework, which is shown to capture the observed dynamics qualitatively and the final droplet configuration quantitatively. Our results show that no detectable mixing occurs during impact and coalescence of similar-sized droplets, but when the sessile droplet is sufficiently larger than the impacting droplet vortex ring generation can be observed. Finally we show how a gradient of wettability on the substrate can potentially enhance mixing.
Resumo:
A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach-Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than -50 dB can be achieved using a 2 × 2 dilated hybrid switch module. A 'building block' approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 × 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches. © 1983-2012 IEEE.