197 resultados para HYBRID
Resumo:
In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.
Resumo:
The transfers of air driven by a revolving door connecting two rooms of initially different temperatures are investigated. The results of small-scale laboratory modelling show that a critical revolution rate exists for which transfers are maximal for a given combination of door geometry, revolution rate and temperature contrast. This critical revolution rate divides two possible transfer regimes for revolving doors. Potential implications of our findings to revolving door operation, to heat losses across the doorway and to ventilation driven by the door are discussed.
Resumo:
Technological progress is determined, to a great extent, by developments in material science. Breakthroughs can happen when a new type of material or new combinations of known materials with different dimensionality and functionality are created. Multilayered structures, being planar or concentric, are now emerging as major players at the forefront of research. Raman spectroscopy is a well-established characterization technique for carbon nanomaterials and is being developed for layered materials. In this issue of ACS Nano, Hirschmann et al. investigate triple-wall carbon nanotubes via resonant Raman spectroscopy, showing how a wealth of information can be derived about these complex structures. The next challenge is to tackle hybrid heterostructures, consisting of different planar or concentric materials, arranged "on demand" to achieve targeted properties.
Resumo:
An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We study the magnetic shielding properties of hybrid ferromagnetic/ superconductor (F/S) structures consisting of two coaxial cylinders, with one of each material. We use an axisymmetric finite-element model in which the electrical properties of the superconducting tube are modeled by a nonlinear E-J power law with a magnetic-field-dependent critical current density whereas the magnetic properties of the ferromagnetic material take saturation into account. We study and compare the penetration of a uniform axial magnetic field in two cases: 1) a ferromagnetic tube placed inside a larger superconducting tube (Ferro-In configuration) and 2) a ferromagnetic tube placed outside the superconducting one (Ferro-Out configuration). In both cases, we assess how the ferromagnetic tube improves the shielding properties of the sole superconducting tube. The influence of the geometrical parameters of the ferromagnetic tube is also studied: It is shown that, upon an optimal choice of the geometrical parameters, the range of magnetic fields that are efficiently shielded by the high-temperature superconductor tube alone can be increased by a factor of up to 7 (2) in a Ferro-Out (Ferro-In) configuration. The optimal configuration uses a 1020 carbon steel with a thickness of 2 mm and a height that is half that of the superconducting cylinder (80 mm). © 2009 IEEE.
Resumo:
Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Future microrobotic applications require actuators that can generate a high actuation force and stroke in a limited volume. Up to now, little research has been performed on the development of pneumatic and hydraulic microactuators, although they offer great prospects in achieving high force densities. One of the main technological barriers in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microactuators based on ferrofluids. A design and simulation method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. These actuators have an outside diameter of 2 mm, a length of 13 mm and have been tested using both pressurized air and water. Our current actuator prototypes are able to operate at pressures up to 1.6 MPa without leakage. At these pressures, forces up to 0.65 N have been achieved. The stroke of the actuators is 10 mm. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Recent research revealed that microactuators driven by pressurized fluids are able to generate high power and force densities at microscale. One of the main technological barriers in the development of these actuators is the fabrication low friction seals. This paper presents a novel scalable seal technology, which resists the actuation pressure relying on a combination of a clearance seal and a surface tension seal. This approach allows to seal pressures of more than 800 kPa without leakage. The seal is tested on an actuator with a bore of 0.8 mm2 and a length of 13 mm, which was able to generate forces up to 0.32 N. © 2008 Springer-Verlag.
Resumo:
From a hybrid systems point of view, we provide a modeling framework and a trajectory tracking control design methodology for juggling systems. We present the main ideas and concepts in a one degree-of-freedom juggler, which consists of a ball bouncing on an actuated robot. We design a hybrid control strategy that, with only information of the ball's state at impacts, controls the ball to track a reference rhythmic pattern with arbitrary precision. We extend this hybrid control strategy to the case of juggling multiple balls with different rhythmic patterns. Simulation results for juggling of one and three balls with a single actuated robot are presented. © 2007 IEEE.