219 resultados para Frequency tuning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new low-cost solution using orthogonal transmission of non-return-to-zero and carrierless-amplitude-and-phase format data to realize a coarse OFDM transmission system. Using low bandwidth electronics and optoelectronic components, the system is demonstrated at 37.5Gb/s. © 2011 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed physical model of amorphous silicon (aSi:H) is incorporated into a twodimensional device simulator to examine the frequency response limits of silicon heterojunction bipolar transistors (HBT's) with aSi:H emitters. The cutoff frequency is severely limited by the transit time in the emitter space charge region, due to the low electron drift mobility in aSi:H, to 98 MHz which compares poorly with the 37 GHz obtained for a silicon homojunction bipolar transistor with the same device structure. The effects of the amorphous heteroemitter material parameters (doping, electron drift mobility, defect density and interface state density) on frequency response are then examined to find the requirements for an amorphous heteroemitter material such that the HBT has better frequency response than the equivalent homojunction bipolar transistor. We find that an electron drift mobility of at least 100 cnr'V"'"1 is required in the amorphous heteroemitter and at a heteroemitter drift mobility of 350 cm2 · V1· s1 and heteroemitter doping of 5×1017 cm3, a maximum cutoff frequency of 52 GHz can be expected. © 1996 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation. Our study on the proton-irradiation-mediated functionalization can be potentially interesting not only for understanding the proton irradiation effects on nanoscale devices, but also for creating the property-tailored nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.