166 resultados para Elastic-Modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the role of connectivity on the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination relative to that of an isostatic network $\delta z$; a floppy network has $\delta z<0$, while a stiff network has $\delta z>0$. Under the influence of an externally applied load we observe that the response of both floppy and rigid network are controlled by the same critical point, corresponding to the onset of rigidity. We use numerical simulations to compute the exponents which characterize the shear modulus, the amplitude of non-affine displacements, and the network stiffening as a function of $\delta z$, derive these theoretically and make predictions for the mechanical response of glasses and fibrous networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that bimesogenic liquid crystals exhibit a marked "odd-even" effect in the flexoelastic ratio (the effective flexoelectric coefficient to the average elastic coefficient), with the ratio being higher for the "odd-spaced" bimesogens (those with an odd number of alkyl groups in the spacer chain) than their neighboring even-spaced counterparts. To determine the contribution of each property to the flexoelastic ratio, we present experimental results on the flexoelectric and elastic coefficients of two homologous nonsymmetric bimesogens which possess odd and even alkyl spacers. Our results show that, although there are differences in the flexoelectric coefficients, there are substantially larger differences in the effective elastic coefficient. Specifically, the odd bimesogen is found to have both a low splay elastic coefficient and a very low bend elastic coefficient which, when combined, results in a significantly lower effective elastic coefficient and consequently a higher flexoelastic ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model is established and validated to study the behavior of porous seabed under solitary wave propagation. Using Biot's poro-elastic theory, the problem is formulated as a two dimensional plane strain problem, and it is modelled using the Finite Element Method. The responses due to the solitary wave are compared with those of linear waves of the same height. It is found that regardless of the wave period, stresses due to solitary waves are generally larger. This indicates a higher potential for shear failure at the seabed under solitary waves. Implications on liquefaction need further investigation. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adhesive properties of the gecko foot have inspired designs of advanced micropatterned surfaces with increased contact areas. We have fabricated micropatterned pillars of vertically aligned carbon nanotube forests with a range of pillar diameters, heights, and spacings (or pitch). We used nanoindentation to measure their elastic and orthogonal adhesion properties and derive their scaling behavior. The patterning of nanotube forests into pillar arrays allows a reduction of the effective modulus from 10 to 15 MPa to 0.1-1 MPa which is useful for developing maximum conformal adhesion. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation provides the ideal framework to determine mechanical properties of bone at the tissue scale without being affected by the size, shape, and porosity of the bone. However, the values of tissue level mechanical properties vary significantly between studies. Since the differences in the bone sample, hydration state, and test parameters complicate direct comparisons across the various studies, these discrepancies in values cannot be compared directly. The objective of the current study is to evaluate and compare mechanical properties of the same bones using a broad range of testing parameters. Wild type C56BL6 mice tibiae were embedded following different processes and tested in dry and rehydrated conditions. Spherical and Berkovich indenter probes were used, and data analysis was considered within the elasto-plastic (Oliver-Pharr), viscoelastic and visco-elastic-plastic frameworks. The mean values of plane strain modulus varied significantly depending on the hydration state, probe geometry and analysis method. Indentations in dry bone analyzed using a visco-elastic-plastic approach gave values of 34 GPa. After rehydrating the same bones and indenting them with a spherical tip and utilizing a viscoelastic analysis, the mean modulus value was 4 GPa, nearly an order of magnitude smaller. Results suggest that the hydration state, probe geometry and the limitations and assumptions of each analysis method influence significantly the measured mechanical properties. This is the first time that such a systematic study has been carried out and it has been concluded that the discrepancies in the mechanical properties of bone measured by nanoindentation found in the literature should not be attributed only to the differences between the bones themselves, but also to the testing and analysis protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformations of sandy soils around geotechnical structures generally involve strains in the range small (0·01%) to medium (0·5%). In this strain range the soil exhibits non-linear stress-strain behaviour, which should be incorporated in any deformation analysis. In order to capture the possible variability in the non-linear behaviour of various sands, a database was constructed including the secant shear modulus degradation curves of 454 tests from the literature. By obtaining a unique S-shaped curve of shear modulus degradation, a modified hyperbolic relationship was fitted. The three curve-fitting parameters are: an elastic threshold strain γe, up to which the elastic shear modulus is effectively constant at G0; a reference strain γr, defined as the shear strain at which the secant modulus has reduced to 0·5G0; and a curvature parameter a, which controls the rate of modulus reduction. The two characteristic strains γe and γr were found to vary with sand type (i.e. uniformity coefficient), soil state (i.e. void ratio, relative density) and mean effective stress. The new empirical expression for shear modulus reduction G/G0 is shown to make predictions that are accurate within a factor of 1·13 for one standard deviation of random error, as determined from 3860 data points. The initial elastic shear modulus, G0, should always be measured if possible, but a new empirical relation is shown to provide estimates within a factor of 1·6 for one standard deviation of random error, as determined from 379 tests. The new expressions for non-linear deformation are easy to apply in practice, and should be useful in the analysis of geotechnical structures under static loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon coatings of thickness down to 2 nanometers are needed to increase the storage density in magnetic hard disks and reach the 100 Gbit/in2 target. Methods to measure the properties of these ultrathin hard films still have to be developed. We show that combining Surface Brillouin Scattering (SBS) andX-ray reflectivity measurements the elastic constants of such films are accessible. Tetrahedral amorphous carbofilms of thickness down to about 2 nm were deposited on Si by an S bend filtered cathodic vacuum arc, achieving a continuous coverage on large areas free of macroparticles. Film thickness and mass density are measured by X-ray reflectivity: densities above 3 g/cm3 are found, indicating a significant sp3 content. The dispersion relations of surface acoustic waves are measured by SBS. We show that for thicknesses above ∼4 nm these waves can be described by a continuum elastic model based on a single homogeneous equivalent film. The elastic constants can then be obtained by fitting the dispersion relations, computed for given film properties, to the measured dispersion relations. For thicknesses of 3 nm or less qualitative differences among films are well measurable, but quantitative results are less reliable. We have thus shown that we can grow and characterise nanometer size tetrahedral amorphous carbon film, which maintain their high density and peculiar mechanical properties down to around 4 nm thickness, satisfying the requirements set for the hard disk coating material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low frequency vibrational spectrum of cluster beam deposited carbon films was studied by Brillouin light scattering. In thin films the values of both bulk modulus and shear modulus has been estimated from the shifts of surface phonon peaks. The values found indicate a mainly sp2 coordinated random network with low density. In thick films a bulk longitudinal phonon peak was detected in a spectral range compatible with the value of the index of refraction and of the elastic constants of thin films. High surface roughness, combined with a rather strong bulk central peak, prevented the observation of surface phonon features. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The failure mode of axially loaded simple, single lap joints formed between thin adherends which are flexible in bending is conventionally described as one of axial peeling. We have observed - using high-speed photography - that it is also possible for failure to be preceded by the separation front, or crack, moving in a transverse direction, i.e. perpendicular to the direction of the axial load. A simple energy balance analysis suggests that the critical load for transverse failure is the same as that for axial separation for both flexible lap joints, where the bulk of the stored elastic energy lies in the adhesive, and structural lap joints in which the energy stored in the adherends dominates. The initiation of the failure is dependent on a local increases in either stress or strain energy to some critical values. In the case of a flexible joint, this will occur within the adhesive layer and the critical site will be close to one of the corners of the joint overlap from which the separation front can proceed either axially or transversely. These conclusions are supported by a finite element analysis of a joint formed between adherends of finite width by a low modulus adhesive. © 2012 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p9 (i.e., G=p9 versus log g) or undrained shear strength cu (i.e., G=cu versus log g) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus,Gmax, a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions forGmax is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value Gmax, and shear strain g is normalized with respect to a reference strain gref at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gref is approximated as a function of the plasticity index.Aunique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/Gmax ±30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavity-expansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current generation of advanced gravitational wave detectors utilize titania-doped tantala/silica multilayer stacks for their mirror coatings. The properties of the low-refractive-index silica are well known; however, in the absence of detailed direct measurements, the material parameters of Young's modulus and coefficient of thermal expansion (CTE) of the high refractive index material, titania-doped tantala, have been assumed to be equal to values measured for pure tantala coatings. In order to ascertain the true values necessary for thermal noise calculations, we have undertaken measurements of Young's modulus and CTE through the use of nanoindentation and thermal-bending measurements. The measurements were designed to assess the effects of titania doping concentration and post-deposition heat-treatment on the measured values in order to evaluate the possibility of optimizing material parameters to further improve thermal noise in the detector. Young's modulus measurements on pure tantala and 25% and 55% titania-doped tantala show a wide range of values, from 132 to 177 GPa, dependent on both titania concentration and heat-treatment. Measurements of CTE give values of (3.9 +/- 0.1) x 10^-6 K^-1 and (4.9 +/- 0.3) x 10^-6 K^-1 for 25% and 55% titania-doped tantala, respectively, without dependence on post-deposition heat-treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.