169 resultados para Computer Algebra
Resumo:
In dynamic centrifuge modelling, fluids with enhanced viscosity are often used to correct for the discrepancy in time scaling. However, great care must be taken when using a high viscosity fluid that hydraulic gradients during saturation do not become high enough to cause excessive model disturbance. This paper introduces the CAM-Sat system which aims to improve the saturation process by continually controlling the fluid flow into the model, limiting it to rates low enough to avoid model disturbance. A new method for measuring the fluid flow rate is then described, and its implementation & improvement to the system is discussed. © 2010 Taylor & Francis Group, London.
Resumo:
A simple and general design procedure is presented for the polarisation diversity of arbitrary conformal arrays; this procedure is based on the mathematical framework of geometric algebra and can be solved optimally using convex optimisation. Aside from being simpler and more direct than other derivations in the literature, this derivation is also entirely general in that it expresses the transformations in terms of rotors in geometric algebra which can easily be formulated for any arbitrary conformal array geometry. Convex optimisation has a number of advantages; solvers are widespread and freely available, the process generally requires a small number of iterations and a wide variety of constraints can be readily incorporated. The study outlines a two-step approach for addressing polarisation diversity in arbitrary conformal arrays: first, the authors obtain the array polarisation patterns using geometric algebra and secondly use a convex optimisation approach to find the optimal weights for the polarisation diversity problem. The versatility of this approach is illustrated via simulations of a 7×10 cylindrical conformal array. © 2012 The Institution of Engineering and Technology.
Resumo:
The extrinsic tensile strength of glass can be determined explicitly if the characteristics of the critical surface flaw are known, or stochastically if the critical flaw characteristics are unknown. This paper makes contributions to both these approaches. Firstly it presents a unified model for determining the strength of glass explicitly, by accounting for both the inert strength limit and the sub-critical crack growth threshold. Secondly, it describes and illustrates the use of a numerical algorithm, based on the stochastic approach, that computes the characteristic tensile strength of float glass by piecewise summation of the surface stresses. The experimental validation and sensitivity analysis reported in this paper show that the proposed computer algorithm provides an accurate and efficient means of determining the characteristic strength of float glass. The algorithm is particularly useful for annealed and thermally treated float glass used in the construction industry. © 2012 Elsevier Ltd.
Resumo:
This book will be of particular interest to academics, researchers, and graduate students at universities and industrial practitioners seeking to apply mobile and pervasive computing systems to improve construction industry productivity.