169 resultados para Ceramic grain
Resumo:
Single grain REBa2C3uO7 ((RE)BCO, where RE is a rare earth element or yttrium) bulk superconducting materials have significant potential for a variety of engineering applications due to their ability to trap high magnetic fields. However, it is well known that the presence of grain boundaries coupled with a high angle of misorientation (typically 5�) significantly reduces the critical current density, J c , in all forms of high temperature superconducting materials. It is of considerable fundamental and technological interest, therefore, to investigate the grain boundary properties of bulk, film and tape (RE)BCO. We report a successful multi-seeding technique for the fabrication of fully aligned, artificial (0��misalignment) grain boundaries within large grain YBCO bulk superconductors using bridge-shaped seeds. The microstructure and critical current densities of the grain boundaries produced by this technique have been studied in detail.
Resumo:
We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor (HTS) containing two grains separated by a well-defined grain boundary. Transport measurements at temperatures between 10 and 300 K were carried out both within one single grain (intra-granular properties) and across the grain boundary (inter-granular properties). The influence of an applied external magnetic field of up to 8 T on the measured sample properties was also investigated. The presence of the grain boundary is found to affect strongly the electrical resistivity of the melt-processed bulk sample, but has almost no effect on its thermoelectric power and thermal conductivity, within experimental error. The results of this study provide direct evidence that the heat flow in multi-granular melt-processed YBCO bulk samples should be virtually unaffected by the presence of grain boundaries in the material. © 2013 IOP Publishing Ltd.
Resumo:
A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.
Resumo:
La0.7Ca0.3MnO3/Mn3O4 composites can be synthesized in one step by thermal treatment of a spray-dried precursor, instead of mixing pre-synthesized powders. Another advantage of this composite system is that a long sintering step can be used without leading to significant modification of the manganite composition. The percolation threshold is reached at ∼20 vol% of manganite phase. The 77 K low field magnetoresistance is enhanced to ∼11% at 0.15 T when the composition is close to the percolation threshold. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
A variety of multiseeding techniques have been investigated over the past 20 yr in an attempt to enlarge bulk (RE)BCO superconducting samples fabricated by the top-seeded melt growth (TSMG) process for practical applications. Unfortunately, these studies have failed to establish whether technically useful values of trapped field can be achieved in multiseeded bulk samples. In this work specially designed, 0°-0° and 45°-45° bridge seeds of different lengths have been employed to produce improved alignment of the seeds during the TSMG process. The ability of these bridge-seeded samples to trap magnetic field, which is the key superconducting property for practical applications of bulk (RE)BCO, is compared for the samples seeded using 0°-0° and 45°-45° bridge seeds of different lengths. The grain boundaries produced by these bridge seeds are analyzed in detail, and the similarities and differences between the two bridge-seeding processes are discussed. © 2013 The American Ceramic Society.
Resumo:
The extreme sensitivity of Sm/Ba at high temperature in air becomes an obstacle to the fabrication of SmBCO single grains that exhibit stable and reliable superconducting properties. In this research, the superconducting properties of SmBCO single grains fabricated by top seeded melt growth (TSMG) from different batches of commercial SmBa2Cu3O 7-d (Sm-123) precursor powder using different processing atmospheres (air and 0.1% O2 in Ar), different processing methods (isothermal growth and continuous cooling) and different amounts of BaO2 content to suppress Sm/Ba substitution in air have been investigated in an attempt to understand fully the TSMG process for this system. As a result, based on extensive data, a novel and simple, low temperature post-annealing approach is proposed specifically to overcome the sensitivity of Tc to Sm/Ba substitution in order to simplify the fabrication of SmBCO and to increase its reliability with a view to the practical processing of these materials. Initial processing trials have been performed successfully to demonstrate the viability of the novel post-annealing process. © 2013 IOP Publishing Ltd.