183 resultados para Armed concrete


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces during concrete construction. Their existence undermines the desired appearance and visual uniformity of architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ own criteria and experience. Often, inspectors may make different assessments even when inspecting the same concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a result, the methodology presented in this paper can increase the reliability of concrete surface quality assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aside from cracks, the impact of other surface defects, such as air pockets and discoloration, can be detrimental to the quality of concrete in terms of strength, appearance and durability. For this reason, local and national codes provide standards for quantifying the quality impact of these concrete surface defects and owners plan for regular visual inspections to monitor surface conditions. However, manual visual inspection of concrete surfaces is a qualitative (and subjective) process with often unreliable results due to its reliance on inspectors’ own criteria and experience. Also, it is labor intensive and time-consuming. This paper presents a novel, automated concrete surface defects detection and assessment approach that addresses these issues by automatically quantifying the extent of surface deterioration. According to this approach, images of the surface shot from a certain angle/distance can be used to automatically detect the number and size of surface air pockets, and the degree of surface discoloration. The proposed method uses histogram equalization and filtering to extract such defects and identify their properties (e.g. size, shape, location). These properties are used to quantify the degree of impact on the concrete surface quality and provide a numerical tool to help inspectors accurately evaluate concrete surfaces. The method has been implemented in C++ and results that validate its performance are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After earthquakes, licensed inspectors use the established codes to assess the impact of damage on structural elements. It always takes them days to weeks. However, emergency responders (e.g. firefighters) must act within hours of a disaster event to enter damaged structures to save lives, and therefore cannot wait till an official assessment completes. This is a risk that firefighters have to take. Although Search and Rescue Organizations offer training seminars to familiarize firefighters with structural damage assessment, its effectiveness is hard to guarantee when firefighters perform life rescue and damage assessment operations together. Also, the training is not available to every firefighter. The authors therefore proposed a novel framework that can provide firefighters with a quick but crude assessment of damaged buildings through evaluating the visible damage on their critical structural elements (i.e. concrete columns in the study). This paper presents the first step of the framework. It aims to automate the detection of concrete columns from visual data. To achieve this, the typical shape of columns (long vertical lines) is recognized using edge detection and the Hough transform. The bounding rectangle for each pair of long vertical lines is then formed. When the resulting rectangle resembles a column and the material contained in the region of two long vertical lines is recognized as concrete, the region is marked as a concrete column surface. Real video/image data are used to test the method. The preliminary results indicate that concrete columns can be detected when they are not distant and have at least one surface visible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The automated detection of structural elements (e.g. concrete columns) in visual data is useful in many construction and maintenance applications. The research in this area is under initial investigation. The authors previously presented a concrete column detection method that utilized boundary and color information as detection cues. However, the method is sensitive to parameter selection, which reduces its ability to robustly detect concrete columns in live videos. Compared against the previous method, the new method presented in this paper reduces the reliance of parameter settings mainly in three aspects. First, edges are located using color information. Secondly, the orientation information of edge points is considered in constructing column boundaries. Thirdly, an artificial neural network for concrete material classification is developed to replace concrete sample matching. The method is tested using live videos, and results are compared with the results obtained with the previous method to demonstrate the new method improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current procedures in post-earthquake safety and structural assessment are performed manually by a skilled triage team of structural engineers/certified inspectors. These procedures, and particularly the physical measurement of the damage properties, are time-consuming and qualitative in nature. This paper proposes a novel method that automatically detects spalled regions on the surface of reinforced concrete columns and measures their properties in image data. Spalling has been accepted as an important indicator of significant damage to structural elements during an earthquake. According to this method, the region of spalling is first isolated by way of a local entropy-based thresholding algorithm. Following this, the exposure of longitudinal reinforcement (depth of spalling into the column) and length of spalling along the column are measured using a novel global adaptive thresholding algorithm in conjunction with image processing methods in template matching and morphological operations. The method was tested on a database of damaged RC column images collected after the 2010 Haiti earthquake, and comparison of the results with manual measurements indicate the validity of the method.