241 resultados para Amorphous silicon thin film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed physical model of amorphous silicon (aSi:H) is incorporated into a twodimensional device simulator to examine the frequency response limits of silicon heterojunction bipolar transistors (HBT's) with aSi:H emitters. The cutoff frequency is severely limited by the transit time in the emitter space charge region, due to the low electron drift mobility in aSi:H, to 98 MHz which compares poorly with the 37 GHz obtained for a silicon homojunction bipolar transistor with the same device structure. The effects of the amorphous heteroemitter material parameters (doping, electron drift mobility, defect density and interface state density) on frequency response are then examined to find the requirements for an amorphous heteroemitter material such that the HBT has better frequency response than the equivalent homojunction bipolar transistor. We find that an electron drift mobility of at least 100 cnr'V"'"1 is required in the amorphous heteroemitter and at a heteroemitter drift mobility of 350 cm2 · V1· s1 and heteroemitter doping of 5×1017 cm3, a maximum cutoff frequency of 52 GHz can be expected. © 1996 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed phase carbon-diamond films which consist of small grain diamond in an a:C matrix were deposited on polished Si using a radio frequency CH4 Ar plasma CVD deposition process. Ellipsometry, surface profilometry, scanning electron microscopy (SEM) and spectrophotometry were used to analyse these films. Film thicknesses were typically 50-100 nm with a surface roughness of ± 30 A ̊ over centimetre length scans. SEM analysis showed the films were smooth and pinhole free. The Si substrate was etched using backside masking and a directional etch to give taut carbon-diamond membranes on a Si grid. Spectrophotometry was used to analyse the optical properties of these membranes. Band gap control was achieved by varying the dc bias of the deposition process. Band gaps of 1.2 eV to 4.0 eV were achieved in these membranes. A technique for controlling the compressive stress in the films, which can range from 0.02 to 7.5 GPa has been employed. This has allowed the fabrication of thin, low stress, high band gap membranes that are extremely tough and chemically inert. Such carbon-diamond membranes seem promising for applications as windows in analytical instruments. © 1992.