185 resultados para stator-rotor
Resumo:
The Brushless Doubly-Fed Machine (BDFM) is attractive for use in wind turbines, especially offshore, as it offers high reliability by virtue of the absence of brushgear. Critical issues in the use of the BDFM in this role at a system level include the appropriate mode of operation, the sizing of associated converter and the control of the machine. At a machine level, the design of the machine and the determination of its ratings are important. Both system and machine issues are reviewed in the light of recent advances in the study of the BDFM, and preliminary comparisons are made with the well-established doubly fed wound rotor induction generator. © 2006 IEEE.
Resumo:
If the conventional steady flow combustor of a gas turbine is replaced with a device which achieves a pressure gain during the combustion process then the thermal efficiency of the cycle is raised. All such 'Pressure Gain Combustors' (e.g. PDEs, pulse combustors or wave rotors) are inherently unsteady flow devices. For such a device to be practically installed in a gas turbine it is necessary to design a downstream row of turbine vanes which will both accept the combustors unsteady exit flow and deliver a flow which the turbine rotor can accept. The design requirements of such a vane are that its exit flow both retains the maximum time-mean stagnation pressure gain (the pressure gain produced by the combustor is not lost) and minimises the amplitude of unsteadiness (reduces unsteadiness entering the downstream rotor). In this paper the exit of the pressure gain combustor is simulated with a cold unsteady jet. The first stage vane is simulated by a one-dimensional choked ejector nozzle with no turning. The time-mean and rms stagnation pressure at nozzle exit is measured. A number of geometric configurations are investigated and it is shown that the optimal geometry both maximizes time mean stagnation pressure gain (75% of that in the exit of the unsteady jet) and minimizes the amplitude of unsteadiness (1/3 of that in the primary jet). The structure of the unsteady flow within the ejector nozzle is determined computationally. Copyright © 2009 by J Heffer and R Miller.
Resumo:
Replacing a conventional combustor in a gas turbine with one that produces a pressure gain could significantly raise cycle efficiency. For this efficiency gain to be achieved the exit flow from the combustor must be coupled to the downstream turbine such that the pressure gain produced by the combustor is retained and such that the turbine efficiency is maintained. The exit flow from a pressure gain combustor will often contain a high velocity unsteady jet. It has previously been proposed that ejectors should be used to harness the energy in the unsteady jet, this paper proposes combining an ejector with the first stage vane, producing a single compact component that preserves the combustion driven pressure gain and delivers a suitable flow to the turbine so that its efficiency is not compromised. This novel component has been experimentally tested for the first time. The performance of this first prototype design is found to be low due to high levels of loss generated by secondary flows. However possible mitigation strategies are discussed. It is shown that the unsteadiness at exit form the ejector-vane is reduced compared to the inlet flow. If a pulse combustor were incorporated into a gas turbine, it is unlikely that the level of unsteadiness experienced in a downstream rotor will be significantly larger that that due to the periodic passing of upstream wakes. Copyright © 2010 by Jonathan Heffer.
Resumo:
AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors are currently investigating the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. In this paper, a 2D finite element model based on the H formulation is introduced. The model is then used to calculate the transport AC loss using both a bulk approximation and modeling the individual turns in a racetrack-shaped coil. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's superconducting permanent magnet synchronous motor design. The transport AC loss of a stator coil is measured using an electrical method based on inductive compensation using a variable mutual inductance. The simulated results are compared with the experimental results, verifying the validity of the model, and ways to improve the accuracy of the model are discussed. © 2010 IEEE.
Resumo:
As we known, the high temperature (77 K) superconducting (HTS) motor is considered as a competitive electrical machine by more and more people. There have been various of designs for HTS motor in the world. However, most of them focus on HTS tapes rather than bulks. Therefore, in order to investigate possibility of HTS bulks on motor application, a HTS magnet synchronous motor which has 75 pieces of YBCO bulks surface mounted on the rotor has been designed and developed in Cambridge University. After pulsed field magnetization (PFM) process, the rotor can trap a 4 poles magnetic field of 375 mT. The magnetized rotor can provide a maximum torque of 49.5 Nm and a maximum power of 7.8 kW at 1500 rpm. © 2010 IEEE.
Resumo:
This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a `spike', and the second with a longer lengthscale disturbance known as a `modal oscillation'. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.
Resumo:
The Brushless Doubly-Fed Machine (BDFM) is a brushless electrical generator which allows variable speed operation with a power converter rated at only a fraction of the machine rating. This paper details an example implementation of the BDFM in a medium-scale wind turbine. Details of a simplified design procedure based on electrical and magnetic loadings are given along with the results of tests on the manufactured machine. These show that a BDFM of the scale works as expected but that the 4/8 BDFM chosen was slower and thus larger than the turbine's original induction machine. The implementation of the turbine system is discussed, including the vector-based control scheme that ensures the BDFM operates at a demanded speed and the Maximum Power Point Tracking (MPPT) scheme that selects the rotor speed that extracts the most power from the incident wind conditions.
Resumo:
A simple method of controlling the Brushless Doubly-Fed Machine (BDFM) is presented. The controller comprises two Proportional-Integral (PI) modules and requires only the rotor speed feedback. The machine model and the control system are developed in MATLAB. Both simulation and experimental results are presented. The performance of the system is presented in the motoring and generating operations. The experimental tests included in this paper were carried out on a 180 frame size BDFM with a nested-loop rotor. © 2007 IEEE.
Resumo:
In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss". This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2010 by ASME.
Resumo:
In this review we describe current scientific and technological issues in the quest to reduce aeroengine noise, in the face of predicted rapid increases in the volume of air traffic, on the one hand, and increasingly strict environmental regulation, on the other. Alongside conventional ducted turbofan designs, new open-rotor contra-rotating power plants are currently under development, which present their own noise challenges. The key sources of tonal and broadband noise, and the way in which noise propagates away from the source, are surveyed in both cases. We also consider in detail two key aspects underpinning the flow physics that continue to receive considerable attention, namely the acoustics of swirling flow and unsteady flow-blade interactions. Finally, we describe possible innovations in open-rotor engine design for low noise.
Resumo:
In the design of high-speed low-power electrical generators for unmanned aircraft and spacecraft, maximization of specific output (power/weight) is of prime importance. Several magnetic circuit configurations (radial-field, axial-field, flux-squeezing, homopolar) have been proposed, and in this paper the relative merits of these configurations are subjected to a quantitative investigation over the speed range 10 000–100000 rev/min and power range 250 W-10 kW. The advantages of incorporating new high energy-density magnetic materials are described. Part I deals with establishing an equivalent circuit for permanent-magnet generators. For each configuration the equivalent circuit parameters are related to the physical dimensions of the generator components and an optimization procedure produces a minimum volume design at discrete output powers and operating speeds. The technique is illustrated by a quantitative comparison of the specific outputs of conventional radial-field generators with samarium cobalt and alnico magnets. In Part II the specific outputs of conventional, flux-squeezing, and claw-rotor magnetic circuit configurations are compared. The flux-squeezing configuration is shown to produce the highest specific output for small sizes whereas the conventional configuration is best at large sizes. For all sizes the claw-rotor configuration is significantly inferior. In Part III the power densities available from axial-field and flux-switching magnetic circuit configurations are maximized, over the power range 0.25-10 kW and speed range 10 000–100000 rpm, and compared to the results of Parts I & II. For the axial-field configuration the power density is always less than that of the conventional and flux-squeezing radial-field configurations. For the flux-switching generator, which is able to withstand relatively high mechanical forces in the rotor, the power density is again inferior to the radial-field types, but the difference is less apparent for small (low power, high speed) generator sizes. From the combined results it can be concluded that the flux-squeezing and conventional radial-field magnetic circuit configurations yield designs with minimum volume over the power and speed ranges considered. © 1985, IEEE. All rights reserved.
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behavior of casing grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading, and the near-casing flow field is then investigated using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. © 2011 American Society of Mechanical Engineers.
Resumo:
New experimental work is reported on the effects of water ingestion on the performance of an axial flow compressor. The background to the work is the effect that heavy rain has on an aeroengine compressor when operating in a "descent idle" mode, i.e., when the compressor is operating at part speed and when the aeromechanical effects of water ingestion are more important than the thermodynamic effects. Most of our existing knowledge in this field comes from whole engine tests. The current work provides the first known results from direct measurements on a stand-alone compressor. The influence of droplet size on path trajectory is considered both computationally and experimentally to show that most rain droplets will collide with the first row of rotor blades. The water on the blades is then centrifuged toward the casing where the normal airflow patterns in the vicinity of the rotor tips are disrupted. The result of this disruption is a reduction in compressor delivery pressure and an increase in the torque required to keep the compressor speed constant. Both effects reduce the efficiency of the machine. The behavior of the water in the blade rows is examined in detail, and simple models are proposed to explain the loss of pressure rise and the increase in torque. The measurements were obtained in a low speed compressor, making it possible to study the mechanical (increase in torque) and aerodynamic (reduction in pressure rise) effects of water ingestion without the added complication of thermodynamic effects. Copyright © 2008 by ASME.
Resumo:
This paper concerns the optimisation of casing grooves and the important influence of stall inception mechanism on groove performance. Installing casing grooves is a well known technique for improving the stable operating range of a compressor, but the wide-spread use of grooves is restricted by the loss of efficiency and flow capacity. In this paper, laboratory tests are used to examine the conditions under which casing treatment can be used to greatest effect. The use of a single casing groove was investigated in a recently published companion paper. The current work extends this to multiple-groove treatments and considers their performance in relation to stall inception mechanisms. Here it is shown that the stall margin gain from multiple grooves is less than the sum of the gains if the grooves were used individually. By contrast, the loss of efficiency is additive as the number of grooves increases. It is then shown that casing grooves give the greatest stall margin improvement when used in a compressor which exhibits spike-type stall inception, while modal activity before stall can dramatically reduce the effectiveness of the grooves. This finding highlights the importance of being able to predict the stall inception mechanism which might occur in a given compressor before and after grooves are added. Some published prediction techniques are therefore examined, but found wanting. Lastly, it is shown that casing grooves can, in some cases, be used to remove rotor blades and produce a more efficient, stable and light-weight rotor. © 2010 by ASME.
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behaviour of grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading and the near-casing flow field is then studied using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. Copyright © 2009 Rolls-Royce plc.