159 resultados para predictive maintenance
Resumo:
Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.
Resumo:
Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.
Resumo:
Understanding the guiding principles of sensory coding strategies is a main goal in computational neuroscience. Among others, the principles of predictive coding and slowness appear to capture aspects of sensory processing. Predictive coding postulates that sensory systems are adapted to the structure of their input signals such that information about future inputs is encoded. Slow feature analysis (SFA) is a method for extracting slowly varying components from quickly varying input signals, thereby learning temporally invariant features. Here, we use the information bottleneck method to state an information-theoretic objective function for temporally local predictive coding. We then show that the linear case of SFA can be interpreted as a variant of predictive coding that maximizes the mutual information between the current output of the system and the input signal in the next time step. This demonstrates that the slowness principle and predictive coding are intimately related.
Resumo:
Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.
Resumo:
Delivering acceptable low end torque and good transient response is a significant challenge for all turbocharged engines. As downsized gasoline engines and Diesel engines make up a larger and larger proportion of the light-duty engines entering the market, the issue takes on greater significance. Several schemes have been proposed to improve torque response in highly boosted engines, including the use of electrical assist turbochargers and compressed air assist. In this paper we examine these methods with respect to their effectiveness in improving transient response and their relative performance along with some of the practical considerations for real world application. Results shown in this paper are from 1-D simulations using the Ricardo WAVE software package. The simulation model is based on a production light-duty Diesel engine modified to allow the introduction of compressed air at various points in the air-path as well as direct torque application to the turbocharger shaft (such as might be available from an electrical assist turbocharger). Whilst the 1-D simulation software provides a suitable environment for investigating the various boost assistance options, the overall air path performance also depends upon the control system. The introduction of boost assistance complicates the control in two significant ways: the system may run into constraints (such as compressor surge) that are not encountered in normal operation and the assistance introduces an additional control input. Production engine controllers are usually based on gain-scheduled PID control and extensive calibration. For this study, the non-linear nature of the engine together with the multiple configurations considered and the slower than real-time execution of 1-D models makes such an approach time consuming. Moreover, an ad-hoc approach would leave some doubt as to the fairness of comparisons between the different boost-assist options. Model Predictive Control has been shown to offer a convenient approach to controlling the 1-D simulations in a close to optimal manner for a typical Diesel VGT-EGR air path configuration. We show that the same technique can be applied to all the considered assistance methods with only modest calibration effort required. Copyright © 2012 SAE International.
Resumo:
An approach to designing a constrained output-feedback predictive controller that has the same small-signal properties as a pre-existing output-feedback linear time invariant controller is proposed. Systematic guidelines are proposed to select an appropriate (non-unique) realization of the resulting state observer. A method is proposed to transform a class of offset-free reference tracking controllers into the combination of an observer, steady-state target calculator and predictive controller. The procedure is demonstrated with a numerical example. © 2013 IEEE.
Resumo:
Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.
Resumo:
A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.
Resumo:
The solution time of the online optimization problems inherent to Model Predictive Control (MPC) can become a critical limitation when working in embedded systems. One proposed approach to reduce the solution time is to split the optimization problem into a number of reduced order problems, solve such reduced order problems in parallel and selecting the solution which minimises a global cost function. This approach is known as Parallel MPC. The potential capabilities of disturbance rejection are introduced using a simulation example. The algorithm is implemented in a linearised model of a Boeing 747-200 under nominal flight conditions and with an induced wind disturbance. Under significant output disturbances Parallel MPC provides a significant improvement in performance when compared to Multiplexed MPC (MMPC) and Linear Quadratic Synchronous MPC (SMPC). © 2013 IEEE.