189 resultados para nonlinear correlation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-point spatial correlation of the rate of change of fluctuating heat release rate is central to the sound emission from open turbulent flames, and a few attempts have been made to address this correlation in recent studies. In this paper, the two-point correlation and its role in combustion noise are studied by analysing direct numerical simulation (DNS) data of statistically multi-dimensional turbulent premixed flames. The results suggest that this correlation function depends on the separation distance and direction but, not on the positions inside the flame brush. This correlation can be modelled using a combination of Hermite-Gaussian functions of zero and second order, i.e. functions of the form (1-Ax2)e-Bx2 for constants A and B, to include its possible negative values. The integral correlation volume obtained using this model is about 0.2δL3 with the length scale obtained from its cube root being about 0.6δ L, where δ L is the laminar flame thermal thickness. Both of the values are slightly larger than the values reported in an earlier study because of the anisotropy observed for the correlation. This model together with the turbulence-dependent parameter K, the ratio of the root-mean-square (RMS) value of the rate of change of reaction rate to the mean reaction rate, derived from the DNS data is applied to predict the far-field sound emitted from open flames. The calculated noise levels agree well with recently reported measurements and show a sensitivity to K values. © 2012 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation of thin aerofoil wakes we compare the global nonlinear dynamics, obtained by direct numerical simulations, to the associated local instability features, derived from linear stability analyses. A given configuration depends on two control parameters: the Reynolds number Re and the adverse pressure gradient m (with m < 0) prevailing at the aerofoil trailing edge. Global instability is found to occur for large enough Re and |m|; the naturally selected frequency is determined by the local absolute frequency prevailing at the trailing edge. © 2010 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear Kosovic, and mixed Leray and α subgrid scale models are contrasted with linear Smagorinsky and Yoshizawa Large Eddy Simulations for a Re = 4000 plane jet simulation. Comparisons are made with Direct Numerical Simulation data and measurements. Global properties of the jet such as the spreading and centreline velocity decay rates are investigated. The mean-flow and turbulence parameters in the self-similar region are also studied. All models generally give encouraging agreement with the Direct Numerical Simulation data and reliable measurements. Solution differences for the models are relatively minor, none giving clear improvements for all data comparisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that a new mixed nonlinear/eddy viscosity LES model reproduces profiles better than a number of competing nonlinear and mixed models for plane channel flow. The objective is an LES method that produces a fully resolved turbulent boundary layer and could be applied to a variety of aerospace problems that are currently studied with RANS, RANS-LES, or DES methods that lack a true turbulent boundary layer. There are two components to the new model. One an eddy viscosity based upon the advected subgrid scale energy and a relatively small coefficient. Second, filtered nonlinear terms based upon the Leray regularization. Coefficients for the eddy viscosity and nonlinear terms come from LES tests in decaying, isotropic turbulence. Using these coefficients, the velocity profile matches measurements data at Reτ ≈ 1000 exactly. Profiles of the components of kinetic energy have the same shape as in the experiment, but the magnitudes differ by about 25%. None of the competing LES gets the shape correct. This method does not require extra operations at the transition between the boundary layer and the interior flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.