154 resultados para multiphase cylindrical screen filter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the authors describe two-dimensional direction finding and signal polarisation estimation from a cylindrical conformal array consisting of directional and polarised antenna elements. Firstly, a simple and general transformation procedure, based on the mathematical framework of geometric algebra, is presented for arbitrary conformal arrays with polarised and directional antennas. Subsequently, the authors utilise the symmetry of cylindrical arrays to estimate signal parameters via rotational invariance techniques. The authors show how to iteratively estimate the azimuth and elevation angles of the incident signal, as well as its polarisation. To illustrate the versatility of this method, the results of simulations on a 3×4 cylindrical conformal array are shown and discussed. © 2012 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be excited by a flat amplitude spectrum. In this article, we present a method using a mixed source model defined as a mixture of the Liljencrants-Fant (LF) model and Gaussian noise. Using the LF model, the base approach used in this presented work is therefore close to a vocoder using exogenous input like ARX-based methods or the Glottal Spectral Separation (GSS) method. Such approaches are therefore dedicated to voice processing promising an improved naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral division like in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX approach where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the amplitude spectra of both deterministic and random components of the glottal source. The proposed mixed source model is controlled by a small set of intuitive and independent parameters. The relevance of this voice production model is evaluated, through listening tests, in the context of resynthesis, HMM-based speech synthesis, breathiness modification and pitch transposition. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forests of carbon nanotubes have been termed as the darkest man-made materials. Such materials exhibit near-perfect optical absorption (reflectance∼0.045%) due to low reflectance and nanoscale surface roughness. We have demonstrated the utilization of these perfectly absorbing forests to produce binary amplitude cylindrical Fresnel lenses. The opaque Fresnel zones are defined by the dark nanotube forests and these lenses display efficient focusing performance at optical wavelengths. Lensing performance was analyzed both computationally and experimentally with good agreement. Such nanostructure based lenses have many potential applications in devices like photovoltaic solar cells. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free vibrational characteristics of coupled conical-cylindrical shells is presented. The equations of motion for the cylindrical shell are solved using a wave approach while the equations of motion for the conical shells are solved using a power series solution. The use of both Donnell-Mushtari and Flügge equations of motion are investigated and their limitations are discussed. Results are presented in terms of natural frequencies for different boundary conditions and the purely torsional mode solution is described. The results from the analytical model presented are compared with those obtained from a finite element model solved with Nastran and other data available in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential design criteria for successful drying of granular particles in a conical continuous centrifugal filter are developed in a dimensionless fashion. Four criteria are considered: minimum flow thickness (to ensure sliding bulk flow rather than particulate flow), desaturation position, output dryness and basket failure. The criteria are based on idealised physical models of the machine operation and are written explicitly as functions of the basket size lout, spin velocity Ω and input flow rate of powder Qp. The separation of sucrose crystals from liquid molasses is taken as a case study and the successful regime of potential operating points (lout, Ω) is plotted for a wide range of selected values of flow rate Qp. Analytical expressions are given for minimum and maximum values of the three independent parameters (lout, Ω, Qp) as a function of the slurry and basket properties. The viable operating regime for a conical centrifugal filter is thereby obtained as a function of the slurry and basket properties. © 2012 The Institution of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-objective optimization approach was proposed for multiphase orbital rendezvous missions and validated by application to a representative numerical problem. By comparing the Pareto fronts obtained using the proposed method, the relationships between the three objectives considered are revealed, and the influences of other mission parameters, such as the sensors' field of view, can also be analyzed effectively. For multiphase orbital rendezvous missions, the tradeoff relationships between the total velocity increment and the trajectory robustness index as well as between the total velocity increment and the time of flight are obvious and clear. However, the tradeoff relationship between the time of flight and the trajectory robustness index is weak, especially for the four- and five-phase missions examined. The proposed approach could be used to reorganize a stable rendezvous profile for an engineering rendezvous mission, when there is a failure that prevents the completion of the nominal mission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses user target intention recognition algorithms for pointing - clicking tasks to reduce users' pointing time and difficulty. Predicting targets by comparing the bearing angles to targets proposed as one of the first algorithms [1] is compared with a Kalman Filter prediction algorithm. Accuracy and sensitivity of prediction are used as performance criteria. The outcomes of a standard point and click experiment are used for performance comparison, collected from both able-bodied and impaired users. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.