160 resultados para hypothesis testing
Resumo:
When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.
Resumo:
The lack of viable methods to map and label existing infrastructure is one of the engineering grand challenges for the 21st century. For instance, over two thirds of the effort needed to geometrically model even simple infrastructure is spent on manually converting a cloud of points to a 3D model. The result is that few facilities today have a complete record of as-built information and that as-built models are not produced for the vast majority of new construction and retrofit projects. This leads to rework and design changes that can cost up to 10% of the installed costs. Automatically detecting building components could address this challenge. However, existing methods for detecting building components are not view and scale-invariant, or have only been validated in restricted scenarios that require a priori knowledge without considering occlusions. This leads to their constrained applicability in complex civil infrastructure scenes. In this paper, we test a pose-invariant method of labeling existing infrastructure. This method simultaneously detects objects and estimates their poses. It takes advantage of a recent novel formulation for object detection and customizes it to generic civil infrastructure scenes. Our preliminary experiments demonstrate that this method achieves convincing recognition results.
Resumo:
Distributed hybrid testing is a natural extension to and builds upon the local hybrid testing technique. Taking advantage of the hybrid nature of the test, it allows a sharing of resources and expertise between researchers from different disciplines by connecting multiple geographically distributed sites for joint testing. As part of the UK-NEES project, a successful series of three-site distributed hybrid tests have been carried out between Bristol, Cambridge and Oxford Universities. The first known multi-site distributed hybrid tests in the UK, they connected via a dedicated fibre network, using custom software, the geotechnical centrifuge at Cambridge to structural components at Bristol and Oxford. These experiments were to prove the connection and useful insights were gained into the issues involved with this distributed environment. A wider aim is towards providing a flexible testing framework to facilitate multi-disciplinary experiments such as the accurate investigation of the influence of foundations on structural systems under seismic and other loading. Time scaling incompatibilities mean true seismic soil structure interaction using a centrifuge at g is not possible, though it is clear that distributed centrifuge testing can be valuable in other problems. Development is continuing to overcome the issues encountered, in order to improve future distributed tests in the UK and beyond.
Resumo:
The absence of adequate inspection data from difficult-to-access areas on pipelines, such as cased-road crossings, makes determination of fitness for continued service and compliance with increasingly stringent regulatory requirements problematic. Screening for corrosion using long-range guided wave testing is a relatively new inspection technique. The complexity of the possible modes of vibration means the technique can be difficult to implement effectively but this also means that it has great potential for both detecting and characterizing flaws. The ability to determine flaw size would enable the direct application of standard procedures for determining fitness-for-service, such as ASME B31G, RSTRENG, or equivalent for tens of metres of pipeline from a single inspection location. This paper presents a new technique for flaw sizing using guided wave inspection data. The technique has been developed using finite element models and experimentally validated on 6'' Schedule 40 steel pipe. Some basic fitness-for-service assessments have been carried out using the measured values and the maximum allowable operating pressure was accurately determined. © 2011 American Institute of Physics.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Induction Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.
Resumo:
In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.
Resumo:
This paper presents the production and testing of an ortho-planar one-way micro-valve. The main advantages of such valves are that they are very compact and can be made from a single flat piece of material. A previous paper presents and discusses a micro-valve assembly based on a spider spring. The present paper focuses on the valve assembly process and the valve performance.. Several prototypes with a bore of 0.2 mm have been built using two manufacturing techniques (μEDM and stereo-lithography) and tested for pressures up to 7 bars. © 2008 International Federation for Information Processing.
Resumo:
This paper presents details of the installation and performance of carbonated soil-MgO columns using a laboratory-scale model auger setup. MgO grout was mixed with the soil using the auger and the columns were then carbonated with gaseous CO2 introduced in two different ways: one using auger mixing and the other through a perforated plastic tube system inserted into the treated column. The performance of the columns in terms of unconfined compressive strength (UCS), stiffness, strain at failure and microstructure (using X-ray diffraction and scanning electron microscopy) showed that the soil-MgO columns were carbonated very quickly (in under 1 h) and yielded relatively high strength values, of 2.4-9.4 MPa, which on average were five times that of corresponding 28-day ambient cured uncarbonated columns. This confirmed, together with observations of dense microstructure and hydrated magnesium carbonates, that a good degree of carbonation had taken place. The results also showed that the carbonation method and period have a significant effect on the resulting performance, with the carbonation through the perforated pipe producing the best results. Copyright © 2013 by ASTM International.
Resumo:
1-D engine simulation models are widely used for the analysis and verification of air-path design concepts and prediction of the resulting engine transient response. The latter often requires closed loop control over the model to ensure operation within physical limits and tracking of reference signals. For this purpose, a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). As an example this study is focused on the transient response of a light-duty car Diesel engine. For the cases examined the proposed controller implementation gives a more systematic procedure than other ad-hoc approaches that require considerable tuning effort. © 2012 IFAC.
Resumo:
A new version of the Multi-objective Alliance Algorithm (MOAA) is described. The MOAA's performance is compared with that of NSGA-II using the epsilon and hypervolume indicators to evaluate the results. The benchmark functions chosen for the comparison are from the ZDT and DTLZ families and the main classical multi-objective (MO) problems. The results show that the new MOAA version is able to outperform NSGA-II on almost all the problems.