157 resultados para high electron mobility transistors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conversion of silver nanoparticle (NP) paste films into highly conductive films at low sintering temperature is an important requirement for the developing areas of additive fabrication and printed electronics. Ag NPs with a diameter of ∼10 nm were prepared via an improved chemical process to produce viscous paste with a high wt%. The paste consisted of as-prepared Ag NP and an organic vehicle of ethylcellulose that was deposited on glass and Si substrates using a contact lithographic technique. The morphology and conductivity of the imprinted paste film were measured as a function of sintering temperature, sintering time and the percentage ratio of Ag NP and ethylcellulose. The morphology and conductivity were examined using scanning electron microscopy (SEM) and a two-point probe electrical conductivity measurement. The results show that the imprinted films were efficiently converted into conducting states when exposed to sintering temperature in the range of 200-240 °C, this temperature is lower than the previously reported values for Ag paste. © 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

15 years ago the vertical SuperJunction (SJ) concept conceived for SJ power MOSFETs was the last, major breakthrough in the field of silicon power devices. Today, the SuperJunction MOSFET technologies have reached a mature stage characterized by gradual performance improvements. SuperJunction Insulated Gate Bipolar Transistors (SJ IGBTs) could interrupt this stagnation holding promise to revitalize voltage classes from 600 up to 1200 V. Such SJ IGBTs surpass by a very significant margin their SJ MOSFET counterparts both in terms of power handling capability, on-state and turn-off losses, all at the same time. On the higher end of the voltage class, SJ IGBTs would top the performance of 1.2 kV IGBTs by a similar margin. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional spatial distribution of Al in the high-k metal gates of metal-oxide-semiconductor field-effect-transistors is measured by atom probe tomography. Chemical distribution is correlated with the transistor voltage threshold (VTH) shift generated by the introduction of a metallic Al layer in the metal gate. After a 1050 °C annealing, it is shown that a 2-Å thick Al layer completely diffuses into oxide layers, while a positive VTH shift is measured. On the contrary, for thicker Al layers, Al precipitation in the metal gate stack is observed and the VTH shift becomes negative. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we extract density of localized tail states from measurements of low temperature conductance in amorphous oxide transistors. At low temperatures, trap-limited conduction prevails, allowing extraction of the trapped carrier distribution with energy. Using a test device with a-InGaZnO channel layer, the extracted tail state energy and density at the conduction band minima are 20 meV and 2 × 10 19 cm -3 eV -1, respectively, which are consistent with values reported in the literature. Also, the field-effect mobility as a function of temperature from 77 K to 300 K is retrieved for different gate voltages, yielding the activation energy and the percolation threshold. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hafnium oxide (HfOx) is a high dielectric constant (k) oxide which has been identified as being suitable for use as the gate dielectric in thin film transistors (TFTs). Amorphous materials are preferred for a gate dielectric, but it has been an ongoing challenge to produce amorphous HfOx while maintaining a high dielectric constant. A technique called high target utilization sputtering (HiTUS) is demonstrated to be capable of depositing high-k amorphous HfOx thin films at room temperature. The plasma is generated in a remote chamber, allowing higher rate deposition of films with minimal ion damage. Compared to a conventional sputtering system, the HiTUS technique allows finer control of the thin film microstructure. Using a conventional reactive rf magnetron sputtering technique, monoclinic nanocrystalline HfOx thin films have been deposited at a rate of ∼1.6nmmin-1 at room temperature, with a resistivity of 1013Ωcm, a breakdown strength of 3.5MVcm-1 and a dielectric constant of ∼18.2. By comparison, using the HiTUS process, amorphous HfOx (x=2.1) thin films which appear to have a cubic-like short-range order have been deposited at a high deposition rate of ∼25nmmin-1 with a high resistivity of 1014Ωcm, a breakdown strength of 3MVcm-1 and a high dielectric constant of ∼30. Two key conditions must be satisfied in the HiTUS system for high-k HfOx to be produced. Firstly, the correct oxygen flow rate is required for a given sputtering rate from the metallic target. Secondly, there must be an absence of energetic oxygen ion bombardment to maintain an amorphous microstructure and a high flux of medium energy species emitted from the metallic sputtering target to induce a cubic-like short range order. This HfOx is very attractive as a dielectric material for large-area electronic applications on flexible substrates. A remote plasma sputtering process (high target utilization sputtering, HiTUS) has been used to deposit amorphous hafnium oxide with a very high dielectric constant (∼30). X-ray diffraction shows that this material has a microstructure in which the atoms have a cubic-like short-range order, whereas radio frequency (rf) magnetron sputtering produced a monoclinic polycrystalline microstructure. This is correlated to the difference in the energetics of remote plasma and rf magnetron sputtering processes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first noncontact photoconductivity measurements of gallium nitride nanowires (NWs) are presented, revealing a high crystallographic and optoelectronic quality achieved by use of catalyst-free molecular beam epitaxy. In comparison with bulk material, the NWs exhibit a long conductivity lifetime (>2 ns) and a high mobility (820 ± 120 cm 2/(V s)). This is due to the weak influence of surface traps with respect to other III-V semiconducting NWs and to the favorable crystalline structure of the NWs achieved via strain-relieved growth. © 2012 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinks formation in heterostructural nanowires was observed to be dominant when InAs nanowires were grown on GaAs nanowires. Nanowires were grown through vapor-liquid-solid (VLS) mechanism in an MOCVD (metalorganic chemical vapor deposition) reactor. GaAs nanowires were grown in [1 1 1 ]B direction on a GaAs (1 1 1 )B substrate. When InAs nanowires grown on the GaAs nanowires, most of the InAs nanowires changed their growth directions from [1 1 1 ]B to other 〈111〉B directions. The kinks formation is ascribed to the large compressive misfit strain at the GaAs/InAs interface (7.2% lattice mismatch between GaAs and InAs) and the high mobility of indium species during MOCVD growth. The in-depth analysis of the kinks formation was done by growing InAs for short times on the GaAs nanowires and characterizing the samples. The hindrance to compressively strain InAs to form coherent layers with GaAs pushed the InAs/Au interfaces to the sides of the GaAs nanowires growth ends. New InAs/Au interfaces have generated at the sides of GaAs nanowires, due to lateral growth of InAs on GaAs nanowires. These new interfaces led the InAs nanowires growth in other 〈111〉B directions. The morphological and structural features of these heterostructural kinked nanowires were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter, we present a review of our continuing efforts toward the development of discrete, low-dimensional nanostructured carbon-based electron emitters. Carbon nanotubes and nanofibers, herein referred to simply as CNTs, are one-dimensional carbon allotropes formed from cylindrically rolled and nested graphene sheets, have diameters between 1 and 500 nm and lengths of up to several millimeters, and are perfect candidates for field emission (FE) applications. By virtue of their extremely strong sp2 C-C bonding, intrinsic to the graphene hexagonal lattice, CNTs have demonstrated impressive chemical inertness, unprecedented thermal stabilities, significant resistance to electromigration, and exceptionally high axial current carrying capacities, even at elevated temperatures. These near ideal cold cathode electron emitters have incredibly high electric field enhancing aspect ratios combined with virtual point sources of the order of a few nanometers in size. The correct integration and judicious development of suitable FE platforms based on these extraordinary molecules is critical and will ultimately enable enhanced technologies. This chapter will review some of the more recent platforms, devices and structures developed by our group, as well as our contributions towards the development of industry-scalable technologies for ultra-high-resolution electron microscopy, portable x-ray sources, and flexible environmental lighting technologies. © 2012 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires grown from identical catalyst particles. We compare the transfer characteristics and field-effect mobility versus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FLG foam offers excellent electrical conductivity, an appropriate hierarchical pore structure for containing the electro-active sulphur and facilitates rapid electron/ion transport. This cathode system does not require any additional binding agents, conductive additives or a separate metallic current collector thus decreasing the weight of the cathode by typically ∼20-30 wt%. A Li-S battery with the sulphur-FLG foam cathode shows good electrochemical stability and high rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mA g(-1). Even after 400 cycles the capacity decay is only ∼0.064% per cycle relative to the early (e.g. the 5th cycle) discharge capacity, while yielding an average columbic efficiency of ∼96.2%. Our results indicate the potential suitability of graphene foam for efficient, ultra-light and high-performance batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 AIP Publishing LLC. We report bilayer-graphene field effect transistors operating as Terahertz (THz) broadband photodetectors based on plasma-waves excitation. By employing wide-gate geometries or buried gate configurations, we achieve a responsivity ∼1.2 V/W (1.3 mA/W) and a noise equivalent power ∼2 × 10-9 W/√Hz in the 0.29-0.38 THz range, in photovoltage and photocurrent mode. The potential of this technology for scalability to higher frequencies and the development of flexible devices makes our approach competitive for a future generation of THz detection systems.